	Chemistry 300 – Inorganic Chemistry Name:			
Ex	am #1 – September 22, 2004			
1.	Rank the following ions from <i>most</i> acidic to <i>lea</i>	ast acidic: Mo ⁶⁺ , V ⁵⁺ , Sn ⁴⁺ , As ⁵⁺ , Te ⁶⁺		
2.	Give the complete electronic configuration of C that describe a 4s-electron in Ga. What is the and 3d electrons?			
3.	Give the formula and the name of the highest e the oxidation number of Si in this oxide?	xpected oxide (oxo compound) of Si. What is		
4.	What is the pK_b of the second highest oxide of	Si? (That's one less oxo than in question 3.)		

5. Name the conjugate acid of the oxo anion in question 4 and calculate its pK_a .

Based upon the following predominance diagrams:

$\mathbf{M_a}^{+\mathbf{y}}$					M _a oxide			
$\mathbf{M_b}^{+\mathrm{y}}$	M _b oxide				[M _b hydroxide] ^{h-}			
	$\mathbf{M_c}^{+y}$]	M _c oxide			[M _c (OH)]	
$\mathbf{M_d}^{+y}$		M _d oxide		$[M_d(OH)]^{h-}$				
HA _e		$\mathbf{A_e}^-$						
		HA_f				$\mathbf{A_f}$		
Н	A_{g}	$\mathbf{A_g}^{\text{-}}$						
	HA	L h			A _h -			

- 6. Rank the acids (cations) from strongest to weakest.
- 7. Rank the bases (anions) from strongest to weakest.
- 8. Which pairs will react? Rank **ALL** cation/anion pairs that will react from most reactive to least reactive?

9. Draw Lewis structures and VSEPR shapes for the following:

 $IF_3,\,XeF_4,\,GeO_3^{-2}$