Chemistry 210

Exam 2

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Integrated Rate Laws:

Avogadro's Number = 6.022×10^{23} units/mol $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$ Density of Water = $1.000^{g}/_{mL}$ R = 0.08206 L*atm/mol*K = 8.314 J/mol*K 1atm = 760torr = 760mmHg = <math>101.325kPa PV=nRT $\Delta T_{fp/bp} = k_{fp/bp}$ *m*i
For water: $k_{fp} = -1.86^{\circ C}/_{m}$ $k_{bp} = 0.512^{\circ C}/_{m}$ $\Gamma = MRTi$

 $\begin{aligned} P_1 &= X_1 P_1^{\circ} \\ \Pi &= MRTi \\ C_1 V_1 &= C_2 V_2 \end{aligned}$

 $0^{t\bar{h}} \qquad [A]_t = -kt + [A]_o$ $1^{st} \qquad ln[A]_t = -kt + ln[A]_o$ $2^{nd} \qquad 1/[A]_t = kt + 1/[A]_o$ $k = Ae^{-Ea/RT}$ $ln(k) = \left(\frac{-E_a}{R}\right)\left(\frac{1}{T}\right) + ln(A)$ $ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$ $pH = pK_a + log\left(\frac{[conjugate\ base]}{[conjugate\ acid]}\right)$

$$\begin{split} E_{cell} &= E^{o}_{cell} - {^{RT}}/_{nF} \, lnQ \\ E^{o}_{cell} &= {^{RT}}/_{nF} \, lnK^{o} \\ K^{o} &= e^{\wedge}({^{nF}}/_{RT} \, E^{o}_{cell}) \\ F &= 96485 \, {^{J}}/_{V^{*}mol \, of \, electrons} \\ \Delta G^{o} &= \Delta H^{o}_{system} - T\Delta S^{o}_{system} \\ \Delta G^{o} &= -nFE^{o}_{cell} = -RT lnK^{o} \\ \Delta G &= \Delta G^{o} + RT lnQ \\ F &= 96485 \, {^{C}}/_{mol \, electrons} \\ 1A &= 1 \, C \, / \, sec \end{split}$$

Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

	7																
1																	2
H																	He
1.0079		-															4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	(260)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.03	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)

Multiple Choice (5pts each): Circle the letter of the most correct response.

- 1. For a reaction at equilibrium:
 - a. The reactants and products must be in the gas phase.
 - b. The reaction has stopped.
 - c. The mass of reactants is equal to the mass of products.
 - d. The concentration of reactants is equal to the concentration of products.
 - e. The rate of the forward reaction is equal to the rate of the reverse reaction.
- 2. Which of the following is *false* regarding equilibrium?
 - a. The rates of the forward and reverse reactions are equal
 - b. Equilibrium concentrations do not depend upon whether you approach equilibrium from the left or the right
 - c. The concentrations of products and reactants does not change once the reaction has reached equilibrium
 - d. Equilibrium can often be shifted by changing pressure or temperature
 - e. The forward and reverse reactions stop when a system reaches equilibrium
- 3. Which of the following is *true* regarding equilibrium reactions?
 - a. If K = 1, the reaction has stopped.
 - b. If K < 0, the reaction reaches equilibrium very quickly.
 - c. If K is very large, the limiting reactant is very nearly used up.
 - d. If K > 1, the reaction is reactant-favored.
 - e. If K < 1, the reaction is product-favored.
- 4. Which of the following equilibrium constant expressions is correct for the given reaction:

$$2 \text{ HNO}_3(g) + \text{NO}(g) \leftrightarrow 2 \text{ NO}_2(g) + \text{H}_2\text{O}(g)$$

$$a. \quad K_c = \frac{2[NO_2]_{eq}[H_2O]_{eq}}{2[HNO_3]_{eq}[NO]_{eq}}$$

$$b. \quad K_{c} = \frac{\left[NO_{2}\right]_{eq}^{2} + \left[H_{2}O\right]_{eq}}{\left[HNO_{3}\right]_{eq}^{2} + \left[NO\right]_{eq}}$$

c.
$$K_c = \frac{[NO_2]_{eq}^2 [H_2O]_{eq}}{[HNO_3]_{eq}^2 [NO]_{eq}}$$

$$\label{eq:controller} d. \quad K_c = \frac{\left[HNO_3\right]_{eq}^2\left[NO\right]_{eq}}{\left[NO_2\right]_{eq}^2\left[H_2O\right]_{eq}}$$

e.
$$K_c = \frac{\left[NO_2\right]_{eq}^2}{\left[HNO_3\right]_{eq}^2\left[NO\right]_{eq}}$$

5. Considering the reaction given, all of the following stresses will shift the equilibrium to the right except:

$$CO(g) + H_2O(g) \leftrightarrow CO_2(g) + H_2(g)$$
 $\Delta H_{rxn} = 131 \text{ }^{kJ}/_{mol}$

- a. Adding carbon monoxide to the system
- b. Increasing the pressure on the system
- c. Removing hydrogen from the system
- d. Removing carbon dioxide from the system
- e. Increasing the temperature of the system
- 6. All of the following can be explained by LeChatelier's Principle except:
 - a. Removing a gaseous reactant will shift the equilibrium left.
 - b. Increasing the temperature of an endothermic reaction will shift the equilibrium right.
 - c. Increasing the pressure will shift an equilibrium toward the side that has more gas particles.
 - d. Removing a gaseous product will shift the equilibrium right.
 - e. Adding more of an aqueous reactant will shift the equilibrium right.

- 7. The reaction quotient for a reaction:
 - a. Is usually a negative number
 - b. Is a constant
 - c. Is the concentration of reactants divided by the concentration of products
 - d. Tells you how fast the reaction happens
 - e. Tells you what direction the reaction must shift to reach equilibrium
- 8. Which of the following statements is *false* regarding the reaction quotient, Q?
 - a. It tells the direction that the reaction must shift to reach equilibrium
 - b. If Q<K_c, the system needs to shift toward the products to reach equilibrium
 - c. If $Q=K_c$, the system is at equilibrium
 - d. If Q>K_c, the system needs to shift toward the products to reach equilibrium
 - e. It has the same mathematical form as the equilibrium constant

Problems: Show your work and write your final answer(s) in the answer box.

9. For the reaction:

 $3 \text{ CH}_3\text{OH}(g) + N_2(g) \leftrightarrows 3 \text{ CH}_2\text{O}(g) + 2 \text{ NH}_3(g) \qquad \Delta H = +683.2 \text{ }^{kJ}/_{mol}$ The equilibrium concentrations are observed: $[\text{CH}_3\text{OH}]_{eq} = 0.349\text{M}$, $[N_2]_{eq} = 0.226\text{M}$, $[\text{CH}_2\text{O}]_{eq} = 0.106 \text{ M}$, $[\text{NH}_3]_{eq} = 0.261 \text{ M}$. What is the equilibrium constant for this reaction? (12pts)

10. You have been studying the reaction of $N_2O(g)$ with $O_2(g)$ to form $NO_2(g)$. After your system has reached equilibrium, you find that the concentrations of all species are: $[N_2O]_{eq} = 0.237M$, $[O_2]_{eq} = 0.581M$, $[NO_2]_{eq} = 0.976M$. What is the value of the equilibrium constant for this reaction? (16pts)

11. A saturated potassium bromide solution is prepared by dissolving KBr in pure water and has a potassium ion concentration of 5.118M at some temperature. What is the K_{sp} of potassium bromide at this temperature? (16pts)

12. What are the concentrations of strontium ions (Atomic # = 38) and hydroxide ions in a saturated solution of strontium hydroxide prepared from strontium hydroxide solid in water ($K_{sp} = 3.84 \times 10^{-3}$)? (16pts)

- 13. When 0.267mols of sulfur dioxide $\{SO_2(g)\}$ and 0.338mols of fluorine gas $\{F_2(g)\}$ are sealed together in a 1.500L vessel, they reach equilibrium with thionyl fluoride $\{SOF_2(g)\}$ and oxygen $\{O_2(g)\}$. The equilibrium concentration of $F_2(g)$ is found to be 0.207 M. (25pts)
 - a. What are the equilibrium concentrations of all products and reactants?
 - b. What is the value of K_c ?
 - c. Is the reaction product-favored or reactant-favored?

14. NH₃(g) reacts with ClO(g) to form NO₃(g) and HCl(g) with an equilibrium constant of 3.62x10⁻⁸. In a 2.00L reaction vessel, you have combined 0.293mols of NH₃ with 0.379mols of ClO. What are the concentrations of all reactants and products when this reaction reaches equilibrium? (25pts)