Chemistry 210

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol 32.00° F = 0.000° C = 273.15K Density of Water = $1.000^{g}/_{mL}$ $R = 0.08206^{\text{L*atm}}/_{\text{mol*K}} = 8.314^{\text{J}}/_{\text{mol*K}}$ 1atm = 760torr = 760mmHg = 101.325kPaPV=nRT $\Delta T_{fp/bp} = k_{fp/bp} \cdot m \cdot i$ $k_{fp} = -1.86^{\circ C}/_{m}$ For water: $k_{bp} = 0.512^{\circ C}/_{m}$ $P_1 = X_1 P_1{}^{\mathbf{o}}$

 $\Pi = MRTi$ $C_1V_1 = C_2V_2$

Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Integrated Rate Laws: 0^{th} $[A]_t = -kt + [A]_o$ 1^{st} $ln[A]_t = -kt + ln[A]_o$ 2^{LL} $1/[A]_t = kt + 1/[A]_0$ $k = Ae^{-\text{Ea/RT}}$ $ln(k) = \left(\frac{-E_a}{R}\right)\left(\frac{1}{T}\right) + ln(A)$ $\ln\left(\frac{\mathbf{k}_1}{\mathbf{k}_2}\right) = \frac{\mathbf{E}_a}{\mathbf{R}} \left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right)$ $pH = pK_a + log \left(\frac{[conjugate \ base]}{[conjugate \ acid]} \right)$

$E_{cell} = E^{o}_{cell} - {^{RT}}/_{nF} \ln Q$
$E_{cell}^{o} = {^{RT}}/{_{nF}} ln K^{o}$
$K^{o} = e^{(nF)}_{RT} E^{o}_{cell}$
$F = 96485 \text{J}_{\text{V-mol of electrons}}$
$\Delta G^{o} = \Delta H^{o}_{system} - T\Delta S^{o}_{system}$
$\Delta G^{o} = -nFE^{o}_{cell} = -RTlnK^{o}$
$\Delta G = \Delta G^{o} + RT lnQ$
$F = 96485$ $^{C}/_{mol\ electrons}$
1A = 1C / sec

1																	2
Н																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	\mathbf{Mn}	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice (5pts each): Circle the letter of the most correct response.

- 1. Rank the 3 states of matter from highest kinetic energy to lowest kinetic energy.
 - a. Solid, liquid, gas
 - b. Solid, gas, liquid
 - c. Gas, solid, liquid
 - d. Liquid, gas, solid
 - e. Gas, liquid, solid
- 2. Which of the following statements is most correct about colligative properties of an ideal solution?
 - a. The presence of a solute lowers the boiling point of a solution.
 - b. The presence of a solute raises the vapor pressure of a solution.
 - c. Colligative properties depend upon the number of solute particles, not on the identity of the solute particles.
 - d. The presence of a solute raises the freezing point of a solution.
 - e. These statements are all correct.
- 3. The volume of a gas:
 - a. Decreases as the temperature increases
 - b. Remains constant as the amount of gas is increased
 - c. Is always a constant
 - d. Decreases as the pressure increases
 - e. Increases as the kinetic energy decreases
- 4. Under which of the following conditions is a gas *least* "ideal"?
 - a. Room temperature, 25°C
 - b. High temperature, high pressure
 - c. Low temperature, high pressure
 - d. Low temperature, low pressure
 - e. High temperature, low pressure
- 5. Which of the following does *not* affect the rate of a reaction?
 - a. The coefficients of the reactants in the balanced equation
 - b. The temperature of the system
 - c. The energy of collisions between reacting particles
 - d. The frequency of collisions between reacting particles
 - e. The orientation of colliding particles
- 6. For the generic equation:

$$aA(g) + bB(g) \rightarrow cC(g) + dD(g)$$

Which of the following is a correct expression of the rate of the reaction:

- a. $\frac{1}{a} \frac{\Delta[A]}{\Delta t}$
- b. $k[A]^a[B]^b$
- c. $\frac{-1}{d} \frac{\Delta[D]}{\Delta t}$
- d. $k[C]^{c}[D]^{d}$
- e. $\frac{-1}{b} \frac{\Delta[B]}{\Delta t}$

<i>Name</i> :

- 7. If the rate of a reaction increases by a factor of 9 when the initial concentration of reactant "A" is increased by a factor of 3, the reaction must be:
 - a. 0th order with respect to [A]_o
 - b. 1st order with respect to [A]_o
 - c. 2nd order overall
 - d. 2nd order with respect to [A]_o
 - e. The order of the reaction depends on the balanced chemical equation
- 8. For a second order reaction:
 - a. The slope of the integrated rate law plot is equal to k
 - b. The slope of the integrated rate law plot is equal to $(-E_a/R)$
 - c. The intercept of the integrated rate law is equal to the ln of the initial concentration
 - d. The intercept of the integrated rate law plot is equal to the initial concentration
 - e. The slope of the integrated rate law is equal to the frequency factor, A.
- 9. Which of the following is *false* regarding reaction mechanisms?
 - a. The observed rate law is equal to the sum of the rate laws from all steps
 - b. The observed rate law must agree with the rate law of the slowest step
 - c. The steps of the mechanism can contain chemical species that do not appear in the overall correctly balanced chemical equation
 - d. Catalysts can appear in the steps of a mechanism
 - e. A mechanism must be composed of elementary reactions

Problems: Show your work and write your final answer(s) in the answer box.		
10. What is the volume of 4.872mols of ideal gas at 36.52°C and 2.917atm pressure? (1	(Opts)	
		Answer 10:

11. You have prepared a solution by dissolving 19.715g of ammonium sulfate in enough water to make 250.0mL of							
solution. What is the <i>molarity of ammonium ions</i> in this solution? (12pts)	Answer 11:						

12. How much energy is required to heat 500.0g of water from -5.38°C to 27.13°C? $\{C_s(ice) = 2.09^{J}/_{g.K}; C_s(water) = 4.184^{J}/_{g.K}; C_s(steam) = 2.01^{J}/_{g.K}; \Delta H_{fusion}(water) = 6.02^{kJ}/_{mol}; \Delta H_{vaporization}(water) = 40.7^{kJ}/_{mol}\}$ (12pts)

Answer 12:

13. What is the boiling point of a solution made by dissolving 13.861g of calcium nitrate in 150.0g of water? (12pts)

Answer 13:

14. A reaction is found to be first order with respect to reactant A and zero order with respect to reactant B. If $[A]_o = 0.294M$, $[B]_o = 0.713M$ and $k = 6.37 \times 10^{-4}$ min⁻¹, what is the initial rate of the reaction? (12pts)

Answer 14:

15. A reaction is found to be zero order with respect to chlorate ion, a reactant. If $[ClO_3^{-1}]_0 = 2.983M$ and $k = 7.51x10^{-2}$ min⁻¹, how much time must pass before the concentration of chlorate ions falls to 0.28M? (12pts)

Answer 15:

16. For the reaction:

 $2 \text{ PCl}_3(\text{aq}) + \text{O}_2(\text{aq}) \rightarrow 2 \text{ POCl}_3(\text{g})$

You have collected the following data at 23.72°C:

Experiment	[PCl ₃] _o	$[O_2]_o$	Rate _{observed}
1	0.258 M	1.43 M	$4.37 \times 10^{-5} \text{ M/}_{min}$
2	0.258 M	2.86 M	$8.74 \times 10^{-5} \text{ M/}_{min}$
3	0.516 M	1.43 M	$1.75 \times 10^{-4} \text{ M/}_{min}$

What are the rate law and the value of the rate law constant, k, for this reaction?

If you redo Experiment 2 at 2.63°C, the rate is 1.48×10^{-5} M/_{min}. What is the activation energy for this reaction? (20pts)

- 17. Each of the following solids is dissolved in separate beakers containing 500.0mL of water. Rank the solutions from lowest vapor pressure to highest vapor pressure and explain your answer. (15pts)
 - a. 0.5mols sodium phosphate
 - b. 0.5mols calcium nitrate
 - c. 0.6mols magnesium chloride
 - d. 0.6mols ammonium carbonate