Chemistry 210

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

 $\begin{aligned} &\text{Avogadro's Number} = 6.022 \text{x} 10^{23 \text{ units}}/_{\text{mol}} \\ &32.00^{\circ} F = 0.000^{\circ} C = 273.15 \text{K} \\ &\text{Density of Water} = 1.000^{g}/_{\text{mL}} \\ &\text{R} = 0.08206^{\text{ L*atm}}/_{\text{mol*K}} = 8.314^{\text{ J}}/_{\text{mol*K}} \\ &1\text{atm} = 760 \text{torr} = 760 \text{mmHg} = 101.325 \text{kPa} \\ &\text{PV=nRT} \\ &\Delta T_{fp/bp} = k_{fp/bp} \bullet \text{m} \bullet \text{i} \\ &\text{For water:} \qquad k_{fp} = -1.86^{\circ C}/_{\text{m}} \\ &k_{bp} = 0.512^{\circ C}/_{\text{m}} \\ &P_1 = X_1 P_1^{\circ} \\ &\Pi = \text{MRTi} \\ &C_1 V_1 = C_2 V_2 \\ &E = C_s \bullet \text{g} \bullet \Delta T \end{aligned}$

Quadratic formula:

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\begin{split} & \text{Integrated Rate Laws:} \\ & 0^{\text{th}} \quad [A]_t = -kt + [A]_o \\ & 1^{\text{st}} \quad \ln[A]_t = -kt + \ln[A]_o \\ & 2^{\text{nd}} \quad 1/[A]_t = kt + 1/[A]_o \\ & k = Ae^{-Ea/RT} \\ & \ln(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(A) \\ & \ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\ & pH = pK_a + log\left(\frac{[\text{conjugate base}]}{[\text{conjugate acid}]}\right) \end{split}$$

$E_{cell} = E_{cell}^{o} - {^{RT}}/_{nF} \ln Q$
$E_{cell}^{o} = {RT \choose nF} ln K^{o}$
$K^{o} = e^{(nF)}_{RT} E^{o}_{cell}$
$F = 96485 \text{J}_{\text{V-mol of electrons}}$
$\Delta G^{o} = \Delta H^{o}_{system} - T\Delta S^{o}_{system}$
$\Delta G^{\circ} = -nFE^{\circ}_{cell} = -RTlnK^{\circ}$
$\Delta G = \Delta G^{o} + RT lnQ$
$F = 96485$ $^{\rm C}/_{\rm mol\ electrons}$
1A = 1 C / sec

	_																
1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	40.078							CU	141	Cu		Ga	GC	A3	SC	DI	171
39.098																	
		44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	47.88	50.942	51.996	54.938	55.847 44	58.933 45	58.69	63.546 47	65.39 48	69.723 49	72.61 50	74.922 51	78.96 52	79.904 53	83.80 54
	38			41	42	43	44	45	46	47	48		50	51	52		54
37 Rb 85.468		39	40									49				53	
Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Rb 85.468 55	38 Sr 87.62 56	39 Y 88.906	40 Zr 91.224 72	41 Nb 92.906 73	42 Mo 95.94 74	43 Tc (98) 75	44 Ru 101.07 76	45 Rh 102.91	46 Pd 106.42 78	47 Ag 107.87	48 Cd 112.41 80	49 In 114.82 81	50 Sn 118.71 82	51 Sb 121.76 83	52 Te 127.60 84	53 I 126.90 85	54 Xe 131.29 86
85.468 55 Cs	38 Sr 87.62 56 Ba	39 Y 88.906 57 La	40 Zr 91.224 72 Hf	41 Nb 92.906 73 Ta	42 Mo 95.94 74 W	43 Tc (98) 75 Re	44 Ru 101.07 76 Os	45 Rh 102.91 77 Ir	46 Pd 106.42 78 Pt	47 Ag 107.87 79 Au	48 Cd 112.41 80 Hg	49 In 114.82 81 Tl	50 Sn 118.71 82 Pb	51 Sb 121.76 83 Bi	52 Te 127.60 84 Po	53 I 126.90 85 At	54 Xe 131.29 86 Rn
85.468 55 Cs	38 Sr 87.62 56	39 Y 88.906	40 Zr 91.224 72	41 Nb 92.906 73 Ta 180.95	42 Mo 95.94 74 W 183.84	43 Tc (98) 75	44 Ru 101.07 76 Os 190.23	45 Rh 102.91 77 Ir 192.22	46 Pd 106.42 78	47 Ag 107.87	48 Cd 112.41 80 Hg 200.59	49 In 114.82 81	50 Sn 118.71 82 Pb 207.2	51 Sb 121.76 83	52 Te 127.60 84 Po (209)	53 I 126.90 85	54 Xe 131.29 86
85.468 55 Cs 132.91 87	38 Sr 87.62 56 Ba 137.33 88	39 Y 88.906 57 La 138.91 89	40 Zr 91.224 72 Hf 178.49 104	41 Nb 92.906 73 Ta 180.95 105	42 Mo 95.94 74 W 183.84 106	43 Tc (98) 75 Re 186.21 107	44 Ru 101.07 76 Os 190.23 108	45 Rh 102.91 77 Ir 192.22 109	46 Pd 106.42 78 Pt 195.08	47 Ag 107.87 79 Au 196.97	48 Cd 112.41 80 Hg	49 In 114.82 81 Tl	50 Sn 118.71 82 Pb	51 Sb 121.76 83 Bi	52 Te 127.60 84 Po	53 I 126.90 85 At	54 Xe 131.29 86 Rn
85.468 55 Cs	38 Sr 87.62 56 Ba 137.33	39 Y 88.906 57 La 138.91	40 Zr 91.224 72 Hf 178.49	41 Nb 92.906 73 Ta 180.95	42 Mo 95.94 74 W 183.84	43 Tc (98) 75 Re 186.21	44 Ru 101.07 76 Os 190.23	45 Rh 102.91 77 Ir 192.22	46 Pd 106.42 78 Pt 195.08	47 Ag 107.87 79 Au 196.97	48 Cd 112.41 80 Hg 200.59	49 In 114.82 81 Tl	50 Sn 118.71 82 Pb 207.2	51 Sb 121.76 83 Bi	52 Te 127.60 84 Po (209)	53 I 126.90 85 At	54 Xe 131.29 86 Rn

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

1. Complete each row of the following tables for aqueous solutions at 25°C (4pts per box):

$[\mathrm{H_3O}^+]$	[OH ⁻]	pН	рОН	Acidic, Basic or Neutral?
5.63x10 ⁻⁵	1.78x10 ⁻¹⁰	4.249	9.751	Acidic
2.17x10 ⁻¹⁰	4.60x10 ⁻⁵	9.663	4.337	Basic

2. Complete each row of the following tables for aqueous solutions at 25°C (4pts per box):

Conjugate Acid	K _a @25°C	Conjugate Base	K _b @25°C
HClO	6.7x10 ⁻⁸	ClO ⁻¹	1.5×10^{-7}
HSeO ₃ ⁻¹	1.6x10 ⁻⁹	SeO ₃ ²⁻	6.3x10 ⁻⁶

3. A labmate has prepared a bromite/bromous acid buffer solution at pH=3.5, but does not write much information down in a lab notebook. You know that the concentration of the buffer is 0.995M and pK_b=10.92 for BrO₂⁻¹(aq). Is the concentration of conjugate acid higher in this buffer or is the concentration of conjugate base in this buffer higher? Over what pH range would bromite/bromous acid make an effective buffer? Explain your answers. (10pts)

pK_a (HBrO₂) = 3.08. If the buffer contained equal concentrations of HBrO₂ and BrO₂⁻¹, the pH of the buffer would be 3.08. Since the pH of the buffer is *higher* than 3.08, the buffer must contain more of the conjugate base $\{BrO_2^{-1}\}$ than the conjugate acid.

Buffers are effective within 1 pH unit of the pK_a of the weak acid, so this system can make effective buffers from 2.08 to 4.08.

4. How many milliliters of 0.294M HClO₄(aq) must be added to 25.00mL of 0.308M Mg(OH)₂(aq) to reach the equivalence point? What is the pH of this solution at the equivalence point? Explain any assumptions. (10pts)

 $2 \ HClO_4(aq) + Mg(OH)_2(aq) \rightarrow 2 \ H_2O(1) + Mg(ClO_4)_2(aq) \\ (0.02500L \ Mg(OH)_2(aq)) \ (0.308 mols \ Mg(OH)_2 / L \ Mg(OH)_2(aq)) = 7.70 \times 10^{-3} mols \ Mg(OH)_2 \\ (7.70 \times 10^{-3} mols \ Mg(OH)_2) (2 mol \ HClO_4 / 1 mol \ Mg(OH)_2) = 0.0154 mol \ HClO_4 \\ (0.0154 mol \ HClO_4) \ (1L \ HClO_4(aq) / 0.294 mol \ HClO_4) = 0.0524 L \ HClO_4(aq) = 52.4 mL \ HClO_4(aq) \\ Since this is a strong acid/strong base titration, the pH at the equivalence point should be 7.$

Page 2 Score

5. What is the expected pH of a 0.713M aqueous solution of hypobromous acid? $\{K_a(HBrO) = 2.51x10^{-9}\}$ (10pts)

	HBrO(aq) +	H ₂ O(l) ⇄	$H_3O^+(aq) +$	BrO ⁻¹ (aq)
[]initial	0.713 M	XXXXX	0 M	0 M
$\Delta[\]$	- X	XXXXX	+ x	+ x
[]equilibrium	(0.713 - x) M	XXXXX	x M	x M

$$\begin{array}{lll} K_a = [H_3O^+]_{eq} \, [BrO^{-1}]_{eq} \, / \, [HBrO]_{eq} \, = \, (x)(x) \, / \, (0.713 - x) \, \approx \, (x)(x) \, / \, (0.713) \, = \, 2.51x10^{-9} \\ x = 4.23x10^{-5} \, = \, [H_3O^+] \\ pH = -log[H_3O^+] \, = \, -log(4.23x10^{-5}) \, = \, 4.374 \end{array}$$

6. What is the expected pH of a 0.518M aqueous solution of potassium cyanide? $\{K_b(CN^{-1})=3.0x10^{-5}\}\ (10pts)$

	CN ⁻¹ (aq) +	$H_2O(1) \rightleftharpoons$	OH ⁻¹ (aq) +	HCN(aq)
[]initial	0.518 M	XXXXX	0 M	0 M
$\Delta[\]$	- X	XXXXX	+ x	+ x
[]equilibrium	(0.518 - x) M	XXXXX	х М	х М

7. You have prepared a buffer solution by combining 0.238mols of benzoic acid ($HC_7H_5O_2$, $K_a = 6.4 \times 10^{-5}$) and 0.394mols of sodium benzoate in enough water to make 400.0mL of solution. What is the pH of this buffer solution? (12pts)

$$pH = pK_a + log \{ [C_7H_5O_2^{-1}] / [HC_7H_5O_2] \} =$$

$$= 4.1938 + log \{ 0.394mol C_7H_5O_2^{-1} / 0.238mol HC_7H_5O_2 \} =$$

$$4.413$$

8. What is the K_b of a weak base if 500.0mL of a solution containing 0.368mol of the base and 0.308mol of its conjugate acid has a pH of 8.372? Over what pH range would this conjugate acid/conjugate base pair make an effective buffer? (15pts)

$$\begin{array}{lll} 8.372 &=& pK_a \; + \; log \; \{ [0.368mol/0.5000L] \, / \; [0.308mol/0.5000L] \} \\ & 8.372 \; = \; pK_a \; + \; 0.0773 \\ & pK_a \; = \; 8.2947 \\ & pK_b \; = \; 14 - 8.2947 \; = \; 5.715 \\ & K_b \; = \; 10^{-pKb} \; = \; 10^{-5.715} \; = \; 1.97x10^{-6} \\ & Good \; buffer \; 7.29-9.29 \end{array}$$

Page 3 Score

Chem 210 – Exam 3a
Summer 2012

Name:	

9. You have titrated 25.00mL of 0.773M phosphorous acid solution with an unknown sodium hydroxide solution. You reach the second equivalence point when 44.17mL of base is added. What is the concentration of the original stock sodium hydroxide solution? $\{K_{a1}(H_3PO_3) = 2.42x10^{-2}, K_{a2} = 2.89x10^{-7}, K_{a3} = 1.96x10^{-11}\}$ (15pts)

```
\begin{array}{c} H_3PO_3(aq) \ + \ 2\ NaOH(aq) \ \ \Rightarrow \ \ 2\ H_2O(l) \ + \ Na_2HPO_3(aq) \\ H_3PO_3(aq) \ + \ 2\ OH^{-1}(aq) \ \ \Rightarrow \ \ 2\ H_2O(l) \ + \ HPO_3^{-2}(aq) \\ (0.02500L\ H_3PO_3(aq))\ (0.773mol\ H_3PO_3\ /\ L\ H_3PO_3(aq)) \ = \ 0.019325mol\ H_3PO_3 \\ (0.019325mol\ H_3PO_3)\ (\ 2mol\ NaOH\ /\ 1mol\ H_3PO_3\ ) \ = \ 0.03865mol\ NaOH \\ (0.03865mol\ NaOH)\ /\ 0.04417L \ = \ 0.875M\ NaOH(aq) \end{array}
```

10. You have titrated 20.00mL of an unknown sulfurous acid {H₂SO₃(aq), pK_{a1}=1.770, pK_{a2}=7.201} solution to the second equivalence point with 38.27mL of 0.492M potassium hydroxide. Sketch the titration curve and label all equivalence points and all sulfurous acid-based species in solution in all portions of the curve. What is the concentration of the unknown sulfurous acid solution? How many milliliters were required to reach the *first* equivalence point in this titration? (20pts)

```
H_2SO_3(aq) + 2 KOH(aq) \rightarrow 2 H_2O(1) + K_2SO_3(aq)
(0.03827L KOH(aq)) (0.492mol KOH / L KOH(aq)) = 0.018829mol KOH
(0.018829mol KOH) (1mol H_2SO_3 / 2mol KOH) = 9.4144x10<sup>-3</sup>mol H_2SO_3
(9.4144x10<sup>-3</sup>mol H_2SO_3) / 0.02000L = 0.471M H_2SO_3 (aq)
```

19.14mL required to reach 1st equivalence point, half the amount required to reach the 2nd equivalence point.

Page 4 Score