Chemistry 210

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol $32.00^{\circ}F = 0.000^{\circ}C = 273.15 \text{K}$ Density of Water = $1.000^{g}/_{mL}$ $R = 0.08206^{\text{L-atm}}/_{\text{mol-K}} = 8.314^{\text{J}}/_{\text{mol-K}}$ PV=nRT $\Delta T_{fp/bp} = k_{fp/bp} \cdot \text{m-i}$ For water: $k_{fp} = -1.86^{\circ C}/_{m}$ $k_{bp} = 0.512^{\circ C}/_{m}$ $\Pi = \text{MRTi}$ $C_1V_1 = C_2V_2$ Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\begin{split} & \text{Integrated Rate Laws:} \\ & 0^{\text{th}} \text{ order} \qquad [A]_t = -kt + [A]_o \\ & 1^{\text{st}} \text{ order} \qquad \ln[A]_t = -kt + \ln[A]_o \\ & 2^{\text{nd}} \text{ order} \qquad 1/[A]_t = kt + 1/[A]_o \\ & k = Ae^{-Ea/RT} \\ & \ln(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(A) \\ & \ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\ & pH = pK_a + \log\left(\frac{[\text{conjugate base}]}{[\text{conjugate acid}]}\right) \end{split}$$

$E_{cell} = E^{o}_{cell} - {^{RT}\!/_{nF}} lnQ$
$E_{cell}^{o} = {RT \choose nF} lnK^{o}$
$K^{o} = e^{(nF)}_{RT} E^{o}_{cell}$
$F = 96485$ $J_{V \cdot mol \ of \ electrons}$
$\Delta G^{o} = \Delta H^{o}_{system} - T\Delta S^{o}_{system}$
$\Delta G^{\circ} = -nFE^{\circ}_{cell} = -RTlnK^{\circ}$
$\Delta G = \Delta G^{o} + RT lnQ$
$F = 96485$ $^{\rm C}/_{\rm mol\ electrons}$
1A = 1 C / sec

1	1																2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305							•				26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

1. Complete each row of the following tables for aqueous solutions at 25°C (4pts per box):

$[\mathbf{H_3O^+}]$	[OH ⁻]	pН	рОН	Acidic, Basic or Neutral?	
2.55x10 ⁻⁶	3.92x10 ⁻⁹	5.593	8.407	Acidic	
2.17x10 ⁻⁹	4.61x10 ⁻⁶	8.664	5.336	Basic	

Conjugate Acid	K _a @25°C	Conjugate Base	K _b @25°C		
HCN	3.3x10 ⁻¹⁰	CN ⁻¹	3.0×10^{-5}		
H ₂ PO ₃ ⁻¹	2.9x10 ⁻⁷	HPO ₃ ²⁻	3.45x10 ⁻⁸		

2. A labmate has prepared a sulfite/hydrogen sulfite buffer solution at pH=7.13, but does not write much information down in a lab notebook. You know that the concentration of the buffer is 0.63M and pK_b=6.80 for SO_3^{-2} (aq). Is the concentration of conjugate acid higher in this buffer or is the concentration of conjugate base in this buffer higher? Over what pH range would sulfite/hydrogen sulfite make an effective buffer? Explain your answers. (8pts)

If pK_b for sulfite is 6.80, pK_a for HSO_3^{-1} must be 14 - 6.80 = 7.20

Since the pH of the buffer is lower than the pK_a of the conjugate acid, the concentration of conjugate acid must be higher than the concentration of the conjugate base.

This system would be an effective buffer within 1 pH unit of the pK_a of the conjugate acid, 6.20-8.20

3. What is the expected pH of a 0.449M agueous solution of potassium nitrite? $\{K_b(NO_2^{-1})=2.2\times10^{-11}\}$ (10pts)

Since we know K_b , let's set this up as a K_b equilibrium problem.

	$NO_2^{-1}(aq) +$	$H_2O(1) \Leftrightarrow$	OH ⁻¹ (aq) +	HNO ₂ (aq)
[]initial	0.449M	XXXX	10 ⁻⁷ M	0 M
Δ[]	-x	XXXX	+x	+x
[]equilibrium	(0.449 - x)M	XXXX	$(10^{-7} + x)M$	x M

$$K_b = [OH^{-1}]_{eq}[HNO_2]_{eq} / [NO_2^{-1}]_{eq} = (10^{-7} + x)(x) / (0.449 - x) = 2.2x10^{-11}$$

Assuming "x" is much larger than 10^{-7} and much smaller than 0.449, the K_b expression simplifies to: $K_b = (x)(x) / 0.449 = 2.2x10^{-11} \rightarrow x = 3.14x10^{-6}$ {assumptions OK}

$$K_b = (x)(x) / 0.449 = 2.2 \times 10^{-11} \rightarrow x = 3.14 \times 10^{-6}$$
 {assumptions OK

$$pOH = 5.503 \rightarrow pH = 14 - 5.503 = 8.497$$

Score Page 2

4. You have prepared a buffer solution by combining 0.492mols of acetic acid ($HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$) and 0.385mols of sodium acetate in enough water to make 400.0mL of solution. What is the pH of this buffer solution? (10pts)

Plugging in to the Henderson-Hasselbalch equation...

$$pH = pK_a + log \{[conjugate base] / [conjugate acid]\} = 4.745 + log(0.385 / 0.492) = 4.638$$

5. How much 0.218M HClO₄(aq) must be added to 25.00mL of 0.153M KOH(aq) to reach the equivalence point? What is the pH of this solution at the equivalence point? Explain. (10pts)

$$HClO_4(aq) + KOH(aq) \rightarrow H_2O(l) + KClO_4(aq)$$

 $(0.02500L \text{ KOH(aq)})(0.153 \text{mols KOH/L KOH(aq)})(1 \text{mol HClO}_4/1 \text{mol KOH})(1 \text{L HClO}_4(\text{aq}) / 0.218 \text{mol HClO}_4) =$ $0.0175L \text{ HClO}_4(\text{aq}) = 17.5\text{mL HClO}_4(\text{aq})$

Because this is the titration of a strong monoprotic acid with a strong monobasic base, the equivalence point should be at pH = 7.0

6. What is the K_b of a weak base if 500.0mL of a solution containing 0.181mol of the base and 0.216mol of its conjugate acid has a pH of 6.772? Over what pH range would this conjugate acid/conjugate base pair make an effective buffer? (10pts)

Plugging in to the Henderson-Hasselbalch equation...

$$pH = pK_a + log \{[conjugate base] / [conjugate acid]\}$$

$$6.772 = pK_a + log(0.181/0.216)$$

$$pK_a = 6.849$$

$$pK_b$$
 of the conjugate base is $14 - pK_a = 14 - 6.849 = 7.151$
 $K_b = 10^{\text{-pKb}} = 10^{\text{-7.151}} = 7.16 \text{x} 10^{\text{-8}}$

$$K_b = 10^{-pKb} = 10^{-7.151} = 7.16x10^{-8}$$

Effective buffer within 1 pH unit of the pK_a of the conjugate acid, 5.849-7.849

ScorePage 3

For questions 7-12: You are going to use a titration to determine the concentration of an unknown sulfurous acid solution (H_2SO_3 , $pK_a = 1.77$). The base you have chosen to use is 0.715M potassium hydroxide.

7. Write out the chemical equations for the step-wise deprotonation/neutralization of sulfurous and the overall/net chemical reaction. (8pts)

$$\begin{array}{lll} H_2SO_3(aq) \ + \ KOH(aq) \ \Leftrightarrow \ H_2O(l) \ + \ KHSO_3(aq) \\ KHSO_3(aq) \ + \ KOH(aq) \ \Leftrightarrow \ H_2O(l) \ + \ K_2SO_3(aq) \\ H_2SO_3(aq) \ + \ 2 \ KOH(aq) \ \Leftrightarrow \ 2 \ H_2O(l) \ + \ K_2SO_3(aq) \end{array}$$

8. You titrate 20.00mL of the unknown sulfurous acid solution to the second equivalence point with 31.83mL of potassium hydroxide solution. What is the concentration of the unknown sulfurous acid solution? (10pts)

$$\begin{aligned} H_2SO_3(aq) \ + \ 2 \ KOH(aq) \ \Leftrightarrow \ 2 \ H_2O(l) \ + \ K_2SO_3(aq) \\ (0.03183L \ KOH(aq))(0.715 mols \ KOH/L \ KOH(aq))(1 mol \ H_2SO_3/2 mol \ KOH)(1 \ / \ 0.02000L \ H_2SO_3) = \\ 0.569M \ H_2SO_3(aq) \end{aligned}$$

9. What is the pH of the sulfurous acid solution before the titration begins? (10pts)

Let's set this up as a K_a equilibrium problem. $HSO_3^{-1}(aq)$ $H_2SO_3(aq) +$ H₂O(1) ⇔ $H_3O^+(aq) +$ $10^{-7} \, \mathrm{M}$ []_{initial} 0.569M XXXX 0 MXXXX Δ [] +x+x-x (0.569 - x)MXXXX $(10^{-7} + x)M$ x M equilibrium

Assuming "x" is much smaller than 0.569 and much larger than 10^{-7} : $K_a = (x)(x) / 0.569 = 0.01698 \rightarrow x = 0.0983 \rightarrow \text{not "much smaller" than 0.569!!}$ $K_a = (x)(x) / (0.569 - x) = 0.01698 \rightarrow \text{solving with quadratic formula} \rightarrow x = 0.09016 = [H_3O^+]$ pH = -log(0.09016) = 1.045

10. What is the expected pH when the titration in #8 reaches the *first* equivalence point? (10pts)

This could be explicitly calculated, or explained qualitatively. Since the sulfurous acid solution starts out quite acidic (see #9), and it's a di-protic acid, it's probably safe to assume that the first equivalence point will be a bit on the acidic side. If we want to think about it in terms of the buffers that will form during the titration, we can nail down the number a little better... The first 1:1 buffer $\{H_2SO_3(aq):HSO_3^{-1}(aq)\}$ should have a pH of 1.77 $\{pH=pK_a \text{ of the acid for a 1:1 buffer}\}$. Looking back at question #2, the pK_b for $SO_3^{-2}(aq)$ is given $\{6.80\}$, so the pK_a for $HSO_3^{-1}(aq)$ must be 14-6.80=7.20. This means the *second* 1:1 buffer $\{HSO_3^{-1}(aq):SO_3^{-2}(aq)\}$ should have a pH of 7.20. The pH of the first *equivalence point* should be right between those two buffers, around 4.5

Page 4 Score

11. Sketch the titration curve you would expect for this titration, labeling all equivalence points and sulfurous acid-based species present in each portion of the curve. (10pts)

Some day I'll draw (or calculate) a nice electronic version of a titration curve. Not today...

12. You will have to repeat this titration regularly as part of your job and would like to use a visual indicator in the future. You have the following indicators available: Bromocresol Green (BCG, endpoint range = 3.8-5.4), Brilliant Yellow (BY, endpoint range = 6.6-7.8), Thymol Blue (TB, endpoint range = 8.0-9.6). Which of these visual indicators would be useful in your titration? Explain your choice(s). (8pts)

This answer will be based upon the answers to #10 and #11. From #10, if the pH of the 1st equivalence point is around 4.5, the BCG would be a spectacularly good indicator for the first equivalence point. The second 1:1 buffer should have a pH around 7.2, so BY will be changing color when the solution is buffered, making it a horrible indicator for this titration. The second equivalence point should be a bit more basic than 7.2, so TB might be a good indicator for the second equivalence point.

Just because BY is a horrible indicator *for this specific titration*, that doesn't mean it's always a bad indicator. In fact, for the titration in #5 it would probably be great.