Chemistry 210

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number =
$$6.022x10^{23}$$
 units/mol $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$
Density of Water = $1.000^{g}/_{mL}$
 $R = 0.08206$ L*atm/mol* $K = 8.314$ J/mol* $K = 8.314$

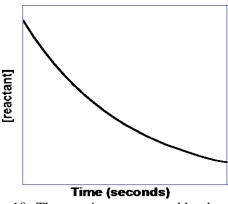
$$\begin{split} &\text{Integrated Rate Laws:} \\ &0^{\text{th}} \text{ order } \quad [A]_t = -kt + [A]_o \\ &1^{\text{st}} \text{ order } \quad \ln[A]_t = -kt + \ln[A]_o \\ &2^{\text{nd}} \text{ order } \quad 1/[A]_t = kt + 1/[A]_o \\ &k = Ae^{-Ea/RT} \\ &\ln(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(A) \\ &\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\ &pH = pK_a + \log\left(\frac{[\text{conjugate base}]}{[\text{conjugate acid}]}\right) \end{split}$$

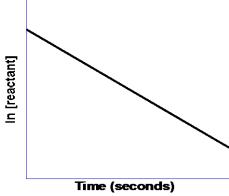
$$\begin{split} E_{cell} &= E^{o}_{cell} - {^{RT}}/_{nF} \, lnQ \\ E^{o}_{cell} &= {^{RT}}/_{nF} \, lnK^{o} \\ K^{o} &= e^{\wedge}({^{nF}}/_{RT} \, E^{o}_{cell}) \\ F &= 96485 \, {^{J}}/_{V^{\bullet}mol \, of \, electrons} \\ \Delta G^{o} &= \Delta H^{o}_{system} - T\Delta S^{o}_{system} \\ \Delta G^{o} &= -nFE^{o}_{cell} = -RT lnK^{o} \\ \Delta G &= \Delta G^{o} + RT lnQ \\ F &= 96485 \, {^{C}}/_{mol \, electrons} \\ 1A &= 1 \, C \, / \, sec \end{split}$$

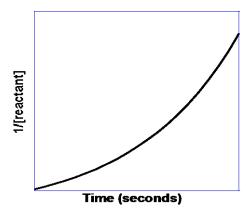
1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990												26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	~	~			~		_	~	- T.	\sim		~	~		~	-	T 7
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
K 39.098		Sc 44.956	Ti 47.88	V 50.942	Cr 51.996	Mn 54.938	F'e 55.847	Co 58.933	Ni 58.69	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.922	Se 78.96	Br 79.904	Kr 83.80
				•													1
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39.098	38 Sr	44.956 39	47.88 40	50.942	51.996 42	54.938	55.847 44	58.933 45	58.69 46	63.546	65.39 48	69.723 49	72.61 50	74.922 51	78.96 52	79.904 53	83.80 54
39.098 37 Rb	38 Sr	39 Y	47.88 40 Zr	50.942 41 Nb	51.996 42 Mo	54.938 43 Tc	55.847 44 Ru	58.933 45 Rh	58.69 46 Pd	63.546 47 Ag	65.39 48 Cd	69.723 49 In	72.61 50 Sn	51 Sb	78.96 52 Te	79.904 53 I	83.80 54 Xe
39.098 37 Rb 85.468	40.078 38 Sr 87.62	44.956 39 Y 88.906	47.88 40 Zr 91.224	50.942 41 Nb 92.906	51.996 42 Mo 95.94	54.938 43 Tc (98)	55.847 44 Ru 101.07	58.933 45 Rh 102.91	58.69 46 Pd 106.42	63.546 47 Ag 107.87	65.39 48 Cd 112.41 80	69.723 49 In 114.82	72.61 50 Sn 118.71	74.922 51 Sb 121.76	78.96 52 Te 127.60	79.904 53 I 126.90	83.80 54 Xe 131.29
39.098 37 Rb 85.468 55	40.078 38 Sr 87.62 56	44.956 39 Y 88.906 57	47.88 40 Zr 91.224 72	50.942 41 Nb 92.906 73	51.996 42 Mo 95.94 74	54.938 43 Tc (98) 75	55.847 44 Ru 101.07 76	58.933 45 Rh 102.91 77	58.69 46 Pd 106.42 78	63.546 47 Ag 107.87 79	65.39 48 Cd 112.41	69.723 49 In 114.82 81	72.61 50 Sn 118.71 82	74.922 51 Sb 121.76 83	78.96 52 Te 127.60 84	79.904 53 I 126.90 85	83.80 54 Xe 131.29 86
39.098 37 Rb 85.468 55 Cs	38 Sr 87.62 56 Ba	44.956 39 Y 88.906 57 La	47.88 40 Zr 91.224 72 Hf	50.942 41 Nb 92.906 73 Ta	51.996 42 Mo 95.94 74 W	54.938 43 Tc (98) 75 Re	55.847 44 Ru 101.07 76 Os	58.933 45 Rh 102.91 77 Ir	58.69 46 Pd 106.42 78 Pt	63.546 47 Ag 107.87 79 Au	65.39 48 Cd 112.41 80 Hg	69.723 49 In 114.82 81 Tl	72.61 50 Sn 118.71 82 Pb	74.922 51 Sb 121.76 83 Bi	78.96 52 Te 127.60 84 Po	79.904 53 I 126.90 85 At	83.80 54 Xe 131.29 86 Rn
39.098 37 Rb 85.468 55 Cs 132.91	40.078 38 Sr 87.62 56 Ba 137.33	44.956 39 Y 88.906 57 La 138.91	47.88 40 Zr 91.224 72 Hf 178.49	50.942 41 Nb 92.906 73 Ta 180.95	51.996 42 Mo 95.94 74 W 183.84	54.938 43 Tc (98) 75 Re 186.21	55.847 44 Ru 101.07 76 Os 190.23	58.933 45 Rh 102.91 77 Ir 192.22	58.69 46 Pd 106.42 78 Pt 195.08	63.546 47 Ag 107.87 79 Au 196.97	65.39 48 Cd 112.41 80 Hg 200.59	69.723 49 In 114.82 81 Tl	72.61 50 Sn 118.71 82 Pb 207.2	74.922 51 Sb 121.76 83 Bi	78.96 52 Te 127.60 84 Po (209)	79.904 53 I 126.90 85 At	83.80 54 Xe 131.29 86 Rn

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice (5pts each): Circle the letter of the most correct response.


- 1. Rank the 3 states of matter from lowest kinetic energy to highest kinetic energy.
 - a. Solid, liquid, gas
 - b. Gas, solid, liquid
 - c. Liquid, gas, solid
 - d. Gas, liquid, solid
 - e. Solid, gas, liquid
- 2. The volume of a gas:
 - a. Decreases as the temperature increases
 - b. Remains constant as the amount of gas is increased
 - c. Is always a constant
 - d. Decreases as the pressure increases
 - e. Increases as the kinetic energy decreases
- 3. Under which of the following conditions is a gas *least* "ideal"?
 - a. Low temperature, low pressure
 - b. High temperature, low pressure
 - c. Room temperature, 25°C
 - d. High temperature, high pressure
 - e. Low temperature, high pressure
- 4. Which of the following is *not* a correct gas law relationship?
 - a. PV = nRT
 - b. $n_1T_1 = n_2T_2$
 - c. $V_1 n_1 = V_2 n_2$
 - d. $P_1V_1 = P_2V_2$
 - e. $P_1 / T_1 = P_2 / T_2$
- 5. Which of the following statements is most correct about colligative properties?
 - a. The presence of a solute lowers the vapor pressure of a solution.
 - b. The presence of a solute lowers the freezing point of a solution.
 - c. Colligative properties depend upon the number of solute particles, not on the identity of the solute particles.
 - d. The presence of a solute raises the boiling point of a solution.
 - e. These statements are all correct.
- 6. Which of the following does *not* affect the rate of a reaction?
 - a. The frequency of collisions between reacting particles
 - b. The orientation of colliding particles
 - c. The coefficients of the reactants in the balanced equation
 - d. The temperature of the system
 - e. The energy of collisions between reacting particles
- 7. If the rate of a reaction increases by a factor of 9 when the initial concentration of reactant "A" is increased by a factor of 9, the reaction must be:
 - a. 0th order with respect to [A]_o
 - b. 1st order with respect to [A]_o
 - c. 2nd order overall
 - d. 2nd order with respect to [A]₀
 - e. The order of the reaction depends on the balanced chemical equation


8. For the generic equation:


$$aA + bB \rightarrow cC + dD$$

Which of the following is a correct expression of the rate of the reaction:

- $-\frac{1}{b}$ Δt Δt
- $\frac{1}{d} \Delta^{[D]}/\Delta t$ d.
- e. $k[C]^{c}[D]^{d}$
- For a second order reaction:
 - The slope of the integrated rate law plot is equal to $(-E_a/R)$
 - b. The slope of the integrated rate law plot is equal to k
 - The intercept of the integrated rate law is equal to the ln of the initial concentration c.
 - d. The intercept of the integrated rate law plot is equal to the initial concentration
 - The slope of the integrated rate law is equal to the frequency factor, A.

- 10. The reaction represented by the plots above:
 - a. Is zero order
 - b. Is first order
 - c. Is second order
 - d. Is third order
 - The order can't be determined by these graphs

Problems:

11. What is the volume of 1.593mols of ideal gas at 19.61°C and 3.162atm pressure? (10pts)

12. You have a 27.94L sample of gas at 41.29°C. What is the volume of this gas if the temperature is decreased to 22.61°C? (10pts)

13. A 3.00kg sample of water is initially at 14.23°C and 1 atm pressure. This sample is heated to 28.19°C at constant pressure. How much energy was required to heat the sample? (10pts)

 $\{C_s(ice) = 2.09^{\text{J}}/_{\text{g.K}}; C_s(water) = 4.184^{\text{J}}/_{\text{g.K}}; C_s(steam) = 2.01^{\text{J}}/_{\text{g.K}}; \Delta H_{fusion}(water) = 6.02^{\text{kJ}}/_{\text{mol}}; \Delta H_{vaporization}(water) = 40.7^{\text{kJ}}/_{\text{mol}}\}$

14. What is the boiling point of a solution made by dissolving 24.923g of potassium sulfate in 150.0g of water? (12pts)

15. A reaction is found to be first order with respect to reactant A and second order with respect to reactant B. If $[A]_o = 0.592M$, $[B]_o = 0.339M$ and $k = 4.42 \times 10^{-4} M^2 sec^{-1}$, what is the initial rate of the reaction? (12pts)

16. A reaction is found to be zero order with respect to methane, a reactant. If $[CH_4]_o = 2.58M$ and $k = 0.103 \text{ M} \cdot \text{min}^{-1}$, what will the concentration of methane be after 6.13minutes have passed? (12pts)

- 17. Triiodoamine (NI₃) reacts with oxygen to form nitrogen dioxide and iodine. Under some set of conditions at some point in time, you find that 0.206mols of oxygen react every minute in a 750.0mL vessel. (16pts)
 - a. What is the rate of oxygen consumption?
 - b. What is the rate of NI₃ consumption?
 - c. What is the rate of nitrogen dioxide production?
 - d. What is the rate of iodine production?
 - e. What is the rate of the *reaction*?

18. For the reaction:

$$2 \; CH_3I(g) \; + \; F_2(g) \;\; \boldsymbol{\rightarrow} \;\; 2 \; CH_3F(g) \; + \; I_2(g)$$

You have collected the following data at 38.42°C:

Experiment	[CH ₃ I] _o	$[F_2]_o$	Initial Rate
1	0.214	0.397	$4.91 \times 10^{-3} \text{ M/}_{\text{sec}}$
2	0.428	0.397	$9.82 \times 10^{-3} \text{ M/}_{\text{sec}}$
3	0.214	0.794	$4.91 \times 10^{-3} \text{ M/}_{\text{sec}}$

What are the rate law and the value of the rate law constant, k, for this reaction?

If you redo Experiment 3 at 22.68°C, the rate slows to 2.37×10^{-3} M/_{sec}. What is the activation energy for this reaction? (18pts)