Chemistry 210 Exam 3 Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer. $$\begin{split} &\text{Avogadro's Number} = 6.022 \text{x} 10^{23 \text{ units}}/_{\text{mol}} \\ &32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15 \text{K} \\ &\text{Density of Water} = 1.000^{\text{g}}/_{\text{mL}} \\ &\text{R} = 0.08206^{\frac{1}{\text{c-atm}}}/_{\text{mol-K}} = 8.314^{\frac{1}{3}}/_{\text{mol-K}} \\ &\text{PV=nRT} \\ &\Delta T_{fp/bp} = k_{fp/bp} \bullet \text{m} \bullet \text{i} \\ &\text{For water, } k_{fp} = -1.86^{\circ\text{C}}/_{\text{m}} \text{ ; } k_{bp} = 0.52^{\circ\text{C}}/_{\text{m}} \\ &P_1 = X_1 P_1^{\circ} \\ &P = cRTi \\ &C_1 V_1 = C_2 V_2 \\ &\text{Quadratic formula:} \\ &x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \end{split}$$ $$\begin{split} &\text{Integrated Rate Laws:} \\ &0^{\text{th}} \text{ order } \quad [A]_t = -kt + [A]_o \\ &1^{\text{st}} \text{ order } \quad \ln[A]_t = -kt + \ln[A]_o \\ &2^{\text{nd}} \text{ order } \quad 1/[A]_t = kt + 1/[A]_o \\ &k = Ae^{-Ea/RT} \\ &\ln(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(A) \\ &\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\ &pH = pK_a + \log\left(\frac{[\text{conjugate base}]}{[\text{conjugate acid}]}\right) \end{split}$$ $$\begin{split} E_{cell} &= E^{\text{o}}_{cell} - {^{RT}}/_{nF} \ln Q \\ E^{\text{o}}_{cell} &= {^{RT}}/_{nF} \ln K^{\text{o}} \\ K^{\text{o}} &= e^{\text{o}}({^{nF}}/_{RT} E^{\text{o}}_{cell}) \\ F &= 96485 \, {^{J}}/_{V^{\text{+}mol of electrons}} \\ \Delta G^{\text{o}} &= \Delta H^{\text{o}}_{system} - T\Delta S^{\text{o}}_{system} \\ \Delta G^{\text{o}} &= -nFE^{\text{o}}_{cell} = -RT \ln K^{\text{o}} \\ \Delta G &= \Delta G^{\text{o}} + RT \ln Q \\ F &= 96485 \, {^{C}}/_{mol \, electrons} \\ 1A &= 1 \, C \, / \, sec \end{split}$$ | 1 | | | | | | | | | | | | | | | | | 2 | |--|--|---|---|--|--|--|--|--|---|--|---|--|--|--|---|---|---| | H | | | | | | | | | | | | | | | | | He | | 1.0079 | | | | | | | | | | | | | | | | | 4.0026 | | 3 | 4 | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | | | | | | | | | В | C | N | 0 | F | Ne | | 6.941 | 9.0122 | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | Al | Si | P | S | Cl | Ar | | 22.990 | 24.305 | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.066 | 35.453 | 39.948 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | \sim | ~ | | | ~ | | _ | ~ | ~ | ~ | | \sim | ~ | | ~ | _ | W.7 | | K | Ca | Sc | Ti | \mathbf{V} | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | K 39.098 | Ca 40.078 | Sc 44.956 | Ti
47.88 | V 50.942 | Cr 51.996 | Mn 54.938 | F'e
55.847 | Co 58.933 | Ni
58.69 | Cu 63.546 | Zn 65.39 | Ga
69.723 | Ge
72.61 | As 74.922 | Se 78.96 | Br
79.904 | Kr
83.80 | | | | | | • | | | | | | | | | | | | | 1 | | 39.098 | 40.078 | 44.956 | 47.88 | 50.942 | 51.996 | 54.938 | 55.847 | 58.933 | 58.69 | 63.546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | 39.098 | 38
Sr | 44.956
39 | 47.88 | 50.942 | 51.996
42 | 54.938 | 55.847
44 | 58.933
45 | 58.69
46 | 63.546 | 65.39
48 | 69.723
49 | 72.61
50 | 74.922
51 | 78.96
52 | 79.904
53 | 83.80
54 | | 39.098
37
Rb | 38
Sr | 39
Y | 47.88
40
Zr | 50.942
41
Nb | 51.996
42
Mo | 54.938
43
Tc | 55.847
44
Ru | 58.933
45
Rh | 58.69
46
Pd | 63.546
47
Ag | 65.39
48
Cd | 69.723
49
In | 72.61
50
Sn | 51
Sb | 78.96
52
Te | 79.904
53
I | 83.80
54
Xe | | 39.098
37
Rb
85.468 | 40.078
38
Sr
87.62 | 44.956
39
Y
88.906 | 47.88
40
Zr
91.224 | 50.942
41
Nb
92.906 | 51.996
42
Mo
95.94 | 54.938
43
Tc
(98) | 55.847
44
Ru
101.07 | 58.933
45
Rh
102.91 | 58.69
46
Pd
106.42 | 63.546
47
Ag
107.87 | 65.39
48
Cd
112.41
80 | 69.723
49
In
114.82 | 72.61
50
Sn
118.71 | 74.922
51
Sb
121.76 | 78.96
52
Te
127.60 | 79.904
53
I
126.90 | 83.80
54
Xe
131.29 | | 39.098
37
Rb
85.468
55 | 40.078
38
Sr
87.62
56 | 44.956
39
Y
88.906
57 | 47.88
40
Zr
91.224
72 | 50.942
41
Nb
92.906
73 | 51.996
42
Mo
95.94
74 | 54.938
43
Tc
(98)
75 | 55.847
44
Ru
101.07
76 | 58.933
45
Rh
102.91
77 | 58.69
46
Pd
106.42
78 | 63.546
47
Ag
107.87
79 | 65.39
48
Cd
112.41 | 69.723
49
In
114.82
81 | 72.61
50
Sn
118.71
82 | 74.922
51
Sb
121.76
83 | 78.96
52
Te
127.60
84 | 79.904
53
I
126.90
85 | 83.80
54
Xe
131.29
86 | | 39.098
37
Rb
85.468
55
Cs | 40.078 38 Sr 87.62 56 Ba | 39
Y
88.906
57
La | 47.88
40
Zr
91.224
72
Hf | 50.942
41
Nb
92.906
73
Ta | 51.996
42
Mo
95.94
74
W | 54.938
43
Tc
(98)
75
Re | 55.847
44
Ru
101.07
76
Os | 58.933
45
Rh
102.91
77
Ir | 58.69
46
Pd
106.42
78
Pt | 63.546
47
Ag
107.87
79
Au | 65.39
48
Cd
112.41
80
Hg | 69.723
49
In
114.82
81
Tl | 72.61
50
Sn
118.71
82
Pb | 74.922
51
Sb
121.76
83
Bi | 78.96
52
Te
127.60
84
Po | 79.904
53
I
126.90
85
At | 83.80
54
Xe
131.29
86
Rn | | 39.098 37 Rb 85.468 55 Cs 132.91 | 40.078 38 Sr 87.62 56 Ba 137.33 | 44.956
39
Y
88.906
57
La
138.91 | 47.88
40
Zr
91.224
72
Hf
178.49 | 50.942
41
Nb
92.906
73
Ta
180.95 | 51.996
42
Mo
95.94
74
W
183.84 | 54.938
43
Tc
(98)
75
Re
186.21 | 55.847
44
Ru
101.07
76
Os
190.23 | 58.933
45
Rh
102.91
77
Ir
192.22 | 58.69
46
Pd
106.42
78
Pt
195.08 | 63.546
47
Ag
107.87
79
Au
196.97 | 65.39
48
Cd
112.41
80
Hg
200.59 | 69.723
49
In
114.82
81
Tl | 72.61
50
Sn
118.71
82
Pb
207.2 | 74.922
51
Sb
121.76
83
Bi | 78.96 52 Te 127.60 84 Po (209) | 79.904
53
I
126.90
85
At | 83.80
54
Xe
131.29
86
Rn | | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------|--------|--------------|--------|--------|--------|--------|------------------------|--------|--------|--------|--------|--------|--------| | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.94 | 173.04 | 174.97 | | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | Th | Pa | \mathbf{U} | Np | Pu | Am | Cm | $\mathbf{B}\mathbf{k}$ | Cf | Es | Fm | Md | No | Lr | | 232.04 | 231.04 | 238.03 | 237.05 | (244) | (243) | (247) | (247) | (251) | (252) | (258) | (258) | (259) | (260) | 1. Complete each **row** of the following tables for aqueous solutions at 25°C (4pts per box): | $[\mathbf{H_3O}^+]$ | [OH ⁻] | pН | рОН | Acidic, Basic or Neutral? | |-----------------------|--------------------|----|-------|---------------------------| | 5.37x10 ⁻⁶ | | | | | | | | | 4.183 | | | Conjugate Acid | K _a @25°C | Conjugate Base | К _b @25°С | |--------------------------------|------------------------|-----------------------|-----------------------| | H ₂ PO ₃ | | | 5.13x10 ⁻⁸ | | | 1.58x10 ⁻¹¹ | Te ²⁻ | | 2. Explain why each of the following *does not* result in an effective buffer? (15pts) $0.38 \text{mol HClO}_4(\text{aq}) + 0.38 \text{mol NaClO}_4(\text{aq})$ 1.28mol K_2 HPO₃(aq) + 1.28mol HClO₄(aq) $1.24 mol\ Na_2SO_3(aq) + 0.03 mol\ NaHSO_3(aq)$ 3. How much 1.183M KOH(aq) must be added to 25.00mL of 1.262M HCl(aq) to reach the equivalence point? (14pts) 4. You have dissolved 11.338g of sodium fluoride in enough water to make 300.0mL of solution. What is the expected pH of this solution? { $K_b(F) = 1.52 \times 10^{-11}$ } (15pts) 5. What is the expected pH of a buffer prepared by dissolving 13.537g of selenous acid and 14.661g of sodium hydrogen selenite in enough water to make 150.00mL of solution? $\{K_a(H_2SeO_3) = 2.43x10^{-8}\}$ (18pts) - Summer 2010 - 6. What is the K_a of an acid if 250.0mL of a solution containing 0.318 mol of the acid and 0.393 mol of its conjugate base has a pH of 9.357? Over what pH range would this conjugate acid/ conjugate base pair make an effective buffer? (20pts) 7. You have titrated 25.00mL of 0.773M sulfurous acid solution with an unknown sodium hydroxide solution. You reach the second equivalence point when 44.17mL of base is added. What is the concentration of the original stock sodium hydroxide solution? What is the expected pH of the sulfurous acid solution before the titration begins? $\{K_{a1}(H_2SO_3) = 1.68 \times 10^{-2}, K_{a2}(H_2SO_3) = 6.42 \times 10^{-8}\}$ (20pts)