Chemistry 210

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number =
$$6.022 \times 10^{23}$$
 units/ $_{mol}$ 32.00°F = 0.000 °C = 273.15 K Density of Water = $1.000^g/_{mL}$ R = 0.08206 $_{-\text{atm}}^{\text{L-atm}}/_{mol \cdot \text{K}} = 8.314$ $_{-\text{mol} \cdot \text{K}}^{\text{J}}$ PV=nRT $\Delta T_{fp/bp} = k_{fp/bp} \cdot \text{m} \cdot \text{i}$ For water: $k_{fp} = -1.86^{\circ \text{C}}/_{m}$ $k_{bp} = 0.512^{\circ \text{C}}/_{m}$ $P_1 = X_1 P_1^{\circ}$ $\Pi = cRTi$ $C_1 V_1 = C_2 V_2$

$$\begin{split} & Integrated \ Rate \ Laws: \\ & In[A]_t = -kt + In[A]_o \\ & 1/[A]_t = kt + 1/[A]_o \\ & [A]_t = -kt + [A]_o \\ k = Ae^{-Ea/RT} \\ & In(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + In(A) \\ & In\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\ & pH = pK_a + log\left(\frac{[conjugate \ base]}{[conjugate \ acid]}\right) \end{split}$$

$$\begin{split} E_{\text{cell}} &= E^{\text{o}}_{\text{cell}} - {^{\text{RT}}}/_{\text{nF}} \ln Q \\ E^{\text{o}}_{\text{cell}} &= {^{\text{RT}}}/_{\text{nF}} \ln K^{\text{o}} \\ K^{\text{o}} &= e^{\text{o}}({^{\text{nF}}}/_{\text{RT}} E^{\text{o}}_{\text{cell}}) \\ F &= 96485 \, ^{\text{J}}/_{\text{V-mol of electrons}} \\ \Delta G^{\text{o}} &= \Delta H^{\text{o}}_{\text{system}} - T\Delta S^{\text{o}}_{\text{system}} \\ \Delta G^{\text{o}} &= -\text{nFE}^{\text{o}}_{\text{cell}} = -\text{RT} \ln K^{\text{o}} \\ \Delta G &= \Delta G^{\text{o}} + \text{RT} \ln Q \\ F &= 96485 \, ^{\text{C}}/_{\text{mol electrons}} \\ 1A &= 1 \, \text{C} / \text{sec} \end{split}$$

Qua	dratic formula:
<i>x</i> =	$-b \pm \sqrt{b^2 - 4ac}$
λ –	2 <i>a</i>

1]																2
Н																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	\mathbf{Ac}	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice (6pts each): Circle the letter of the most correct response.

- 1. Rank the 3 states of matter from highest kinetic energy to lowest kinetic energy.
 - a. Solid, liquid, gas
 - b. Solid, gas, liquid
 - c. Liquid, gas, solid
 - d. Gas, liquid, solid
 - e. Gas, solid, liquid
- 2. The volume of a gas:
 - a. Increases as the temperature increases
 - b. Remains constant as the amount of gas is increased
 - c. Is always a constant
 - d. Increases as the pressure increases
 - e. Decreases as the kinetic energy increases
- 3. Carbon tetrabromide (CBr₄) has a higher boiling point than carbon tetrafluoride (CF₄) because:
 - a. The bonds in CF₄ are polar but the bonds in CBr₄ are not
 - b. CBr₄ has a higher molecular weight than CF₄
 - c. CF₄ is a polar molecule but CBr₄ is not
 - d. CF₄ has stronger intermolecular forces than CBr₄
 - e. CF₄ is a gas at room temperature
- 4. When dissolving a solid in a liquid:
 - a. Formation of solvent-solute interactions is endothermic
 - b. The boiling point of the solution will be lower than that of the pure solvent
 - c. Energy is released (exothermic) by breaking solvent-solvent and solute-solute interactions
 - d. The enthalpy of solution is always positive
 - e. The freezing point of the solution will be lower than that of the pure solvent
- 5. Which of the following statements is most correct about colligative properties of an ideal solution?
 - a. The presence of a solute raises the boiling point of a solution.
 - b. The presence of a solute lowers the freezing point of a solution.
 - c. The presence of a solute lowers the vapor pressure of a solution.
 - d. Colligative properties depend upon the number of solute particles, not on the identity of the solute particles.
 - e. These statements are all correct.
- 6. All of the following concentration units require that you use the molar mass of the solute except:
 - a. Molarity
 - b. Mass percent
 - c. Mole fraction
 - d. Normality
 - e. Molality

7. You have prepared a solution by dissolving 19.892g of sodium phosphate in enough water to make 400.0mL of solution. What is the *molarity* of this solution? (12pts)

8. You have prepared a solution by dissolving 13.617g of ammonium perchlorate in 100.0g of water. What is the *molality* of this solution? (12pts)

9. You have prepared a solution by diluting 15.00mL of a 1.337M aqueous solution of iron(II) sulfate to a total volume of 125.0mL. What is the *molarity* of this solution? (12pts)

10. What is the boiling point of a solution made by dissolving 27.499g of sodium nitrate in 200.0g of water? (15pts)

- 11. Each of the following solids is dissolved in separate beakers containing 500.0mL of water. Rank the solutions from highest boiling point to lowest boiling and explain your answer. (15pts)
 - a. 0.4mols magnesium phosphate
 - b. 0.6mols sodium chloride
 - d. 0.7mols ammonium phosphate
 - c. 0.5mols calcium nitrate

12. How much energy is required to heat 1.334kg of water from 69.16°C to 118.62°C? { $C_s(ice) = 2.09^{J}/_{g.K}$; $C_s(water) = 4.184^{J}/_{g.K}$; $C_s(steam) = 2.01^{J}/_{g.K}$; $\Delta H_{fusion}(water) = 6.02^{kJ}/_{mol}$; $\Delta H_{vaporization}(water) = 40.7^{kJ}/_{mol}$ } (25pts)

13. Some salts have enough covalent bond character that they do not completely dissociate when dissolved in water. You have performed an experiment in which you have made a solution by dissolving 29.531g of bismuth(III) chloride in 150.00mL of water. The observed freezing point of this solution is –2.32°C. Which of the following equations is most consistent with your observed freezing point? Explain your answer with explicit calculations. (25pts)

$$\begin{array}{cccc} BiCl_3(s) & \rightarrow & Bi^{3+}(aq) & + & 3 & Cl^{-}(aq) \\ BiCl_3(s) & \rightarrow & [BiCl]^{2+}(aq) & + & 2 & Cl^{-}(aq) \\ BiCl_3(s) & \rightarrow & [BiCl_2]^{+}(aq) & + & Cl^{-}(aq) \\ & BiCl_3(s) & \rightarrow & BiCl_3(aq) \end{array}$$