Chem 210 – Exam 1a Spring 2010

Chemistry 210

Name:

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer. Avogadro's Number = $6.022 \times 10^{23} \text{ units}/_{mol}$ Integrated Rate Laws: $E_{cell} = E_{pT}^{\circ} - \frac{RT}{nF} lnQ$

Avogadro's Number =
$$6.022 \times 10^{23}$$
 ur
 $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$
Density of Water = $1.000^{g}/_{mL}$
 $R = 0.08206^{L*atm}/_{mol*K} = 8.314^{J}/_{mol*K}$
 $PV=nRT$
 $\Delta T_{fp/bp} = k_{fp/bp} \cdot m \cdot i$
For water: $k_{fp} = -1.86^{\circ C}/_{m}$
 $k_{bp} = 0.512^{\circ C}/_{m}$
 $P_{1} = X_{1}P_{1}^{\circ}$
 $\Pi = cRTi$
 $C_{1}V_{1} = C_{2}V_{2}$

Integrated Rate Laws:

$$ln[A]_{t} = -kt + ln[A]_{o}$$

$$1/[A]_{t} = kt + 1/[A]_{o}$$

$$[A]_{t} = -kt + [A]_{o}$$

$$k = Ae^{-Ea/RT}$$

$$ln(k) = \left(\frac{-E_{a}}{R}\right)\left(\frac{1}{T}\right) + ln(A)$$

$$ln\left(\frac{k_{1}}{k_{2}}\right) = \frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

$$pH = pK_{a} + log\left(\frac{[conjugate base]}{[conjugate acid]}\right)$$

$$\begin{split} E_{cell} &= E_{cell}^{o} - {}^{RT} / {}_{nF} lnQ \\ E_{cell}^{o} &= {}^{RT} / {}_{nF} lnK^{o} \\ K^{o} &= e^{\Lambda} ({}^{nF} / {}_{RT} E_{cell}^{o}) \\ F &= 96485 {}^{J} / {}_{v \cdot mol \ of \ electrons} \\ \Delta G^{o} &= \Delta H^{o}_{system} - T\Delta S^{o}_{system} \\ \Delta G^{o} &= -nFE^{o}_{cell} = -RT lnK^{o} \\ \Delta G &= \Delta G^{o} + RT lnQ \\ F &= 96485 {}^{C} / {}_{mol \ electrons} \\ 1A &= 1 \ C / sec \end{split}$$

Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

	1																r
1																	2
Η																	He
1.0079		_															4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
		58	59	60	61	62	63	64	65	66	67	68	69	70	71]	
		Се	Pr	Nd	Pm	Sm	En	Gd	Th	Dv	Ho	Er	Tm	Yh	Lu		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

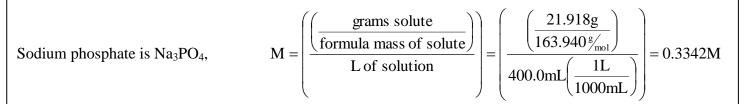
Name:

Chem 210 – Exam 1a Spring 2010

Multiple Choice (6pts each): Circle the letter of the most correct response.

- 1. Rank the 3 states of matter from highest kinetic energy to lowest kinetic energy.
 - a. Solid, liquid, gas
 - b. Solid, gas, liquid
 - c. Liquid, gas, solid
 - d. Gas, liquid, solid
 - e. Gas, solid, liquid
- 2. The volume of a gas:

a. Increases as the temperature increases


- b. Remains constant as the amount of gas is increased
- c. Is always a constant
- d. Increases as the pressure increases
- e. Decreases as the kinetic energy increases
- 3. Which of the following statements is most correct about colligative properties of an ideal solution?
 - a. The presence of a solute raises the boiling point of a solution.
 - b. The presence of a solute lowers the freezing point of a solution.
 - c. The presence of a solute lowers the vapor pressure of a solution.
 - d. Colligative properties depend upon the number of solute particles, not on the identity of the solute particles.
 - e. These statements are all correct.
- 4. All of the following concentration units require that you use the molar mass of the solute except: a. Molarity
 - b. Mass percent
 - c. Mole fraction
 - d. Normality
 - e. Molality
- 5. When dissolving a solid in a liquid:
 - a. Formation of solvent-solute interactions is endothermic
 - b. The boiling point of the solution will be lower than that of the pure solvent
 - c. Energy is released (exothermic) by breaking solvent-solvent and solute-solute interactions
 - d. The enthalpy of solution is always positive
 - e. The freezing point of the solution will be lower than that of the pure solvent
- 6. Carbon tetrabromide (CBr_4) has a higher boiling point than carbon tetrafluoride (CF_4) because:
 - a. The bonds in CF_4 are polar but the bonds in CBr_4 are not

b. CBr₄ has a higher molecular weight than CF₄

- c. CF_4 is a polar molecule but CBr_4 is not
- d. CF₄ has stronger intermolecular forces than CBr₄
- e. CF_4 is a gas at room temperature

Chem 210 – Exam 1a Spring 2010 Name:

7. You have prepared a solution by dissolving 21.918g of sodium phosphate in enough water to make 400.0mL of solution. What is the *molarity* of this solution? (12pts)

8. You have prepared a solution by dissolving 12.537g of ammonium perchlorate in 100.0g of water. What is the *molality* of this solution? (12pts)

Ammonium perchlorate is NH₄ClO₄,
$$m = \left(\frac{\left(\frac{\text{grams solute}}{\text{formula mass of solute}}\right)}{\text{kg of solvent}}\right) = \left(\frac{\left(\frac{12.537\text{g}}{117.488\frac{\text{g}}{\text{mol}}}\right)}{100.0\text{g}\left(\frac{1\text{kg}}{1000\text{g}}\right)}\right) = 1.067\text{m}$$

9. You have prepared a solution by diluting 15.00mL of a 1.268M aqueous solution of iron(II) sulfate to a total volume of 125.0mL. What is the *molarity* of this solution? (12pts)

For dilutions, use $C_1V_1 = C_2V_2$ (1.268M)(15.00mL) = $C_2(125.0mL)$ $C_2 = 0.1522M$

10. What is the boiling point of a solution made by dissolving 26.734g of sodium nitrate in 200.0g of water?

Sodium nitrate is NaNO₃, and forms 2 particles in solution, so the change in T_{bp} is:

$$\Delta T_{bp} = \left(k_{bpe}\right) \left(\frac{\left(\frac{\text{grams solute}}{\text{formula mass of solute}}\right)}{\text{kg of solvent}}\right) \left(\frac{\text{mols particles}}{\text{mol solute}}\right) = \left(0.512\frac{\circ C}{m}\right) \left(\frac{\left(\frac{26.734g}{84.994\frac{g}{/mol}}\right)}{0.2000\text{kg H}_2\text{O}}\right) (2) = 1.61^{\circ}\text{C}$$

Pure water boils at 100°C, so the boiling point of this solution should be $(100^{\circ}C + 1.61^{\circ}C) = 101.61^{\circ}C$

- 11. Each of the following solids is dissolved in separate beakers containing 500.0mL of water. Rank the solutions from highest boiling point to lowest boiling and explain your answer. (15pts)
 - a. 0.4 mols magnesium phosphate
 - b. 0.6mols sodium chloride
 - c. 0.7mols ammonium phosphate
 - d. 0.5mols calcium nitrate

Since all of the solutes are being dissolved in the same amount of water, the amount of boiling point elevation depends upon the number of particles each solute contributes to the solution. 0.4mols Mg₃(PO₄)₂ \rightarrow 5 mols of particles per mol of solute \rightarrow (5)(0.4) = 2.0mols of solute particles 0.6mols NaCl \rightarrow 2 mols of particles per mol of solute \rightarrow (2)(0.6) = 1.2mols of solute particles 0.7mols (NH₄)₃PO₄ \rightarrow 4 mols of particles per mol of solute \rightarrow (4)(0.7) = 2.8mols of solute particles 0.5mols Ca(NO₃)₂ \rightarrow 3 mols of particles per mol of solute \rightarrow (3)(0.5) = 1.5mols of solute particles

 $Highest: 0.7 mols (NH_4)_3 PO_4)_2 > 0.4 mols Mg_3(PO_4)_2 > 0.5 mols Ca(NO_3)_2 > 0.6 mols NaCl : Lowest B.P.$

Chem 210 – Exam 1a Spring 2010 Name:

12. How much energy is required to heat 1.285kg of water from 65.29°C to 115.62°C? { $C_s(ice) = 2.09 J_{g.K}$; $C_s(water) = 4.184 J_{g.K}$; $C_s(steam) = 2.01 J_{g.K}$; $\Delta H_{fusion}(water) = 6.02 J_{mol}$; $\Delta H_{vaporization}(water) = 40.7 J_{mol}$ } (25pts)

Heating liquid water from 65.29°C to 100°C $(4.184 \ ^{J}/_{g^{\circ}C})(1285g)(34.71^{\circ}C) = 186600J$ Phase change liquid to gas $(1285g / 18.015^{g}/_{mol})(40.7^{kJ}/_{mol})(1000 \ ^{J}/_{kJ}) = 2903000J$ Heating steam from 100°C to 115.62°C $(2.01 \ ^{J}/_{g^{\circ}C})(1285g)(15.62^{\circ}C) = 40300J$ Total3129900J

It's equally acceptable to report this problem in kilojoules.

13. Some salts have enough covalent bond character that they do not completely dissociate when dissolved in water. You have performed an experiment in which you have made a solution by dissolving 29.531g of bismuth(III) chloride in 150.00mL of water. The observed freezing point of this solution is -2.32°C. Which of the following equations is most consistent with your observed freezing point? Explain your answer with explicit calculations. (25pts)

$$\begin{array}{rcl} BiCl_{3}(s) & \rightarrow & Bi^{3+}(aq) + 3 \ Cl^{-}(aq) \\ BiCl_{3}(s) & \rightarrow & [BiCl]^{2+}(aq) + 2 \ Cl^{-}(aq) \\ BiCl_{3}(s) & \rightarrow & [BiCl_{2}]^{+}(aq) + \ Cl^{-}(aq) \\ & BiCl_{3}(s) & \rightarrow & BiCl_{3}(aq) \end{array}$$

$$\Delta T_{\rm fp} = \left(k_{\rm fpd} \left(\frac{\frac{\text{grams BiCl}_3}{g_{\rm mol} \operatorname{BiCl}_3}}{\text{kg of solvent}}\right) \left(\frac{\text{mols of particles}}{\text{mol of BiCl}_3}\right) = 2.32^{\circ}\mathrm{C} = \left(1.86^{\circ}\mathrm{C}_{\rm m}\right) \left(\frac{29.531}{315.339^{g_{\rm mol}}}\right) \\ 0.15000 \mathrm{kg H}_2\mathrm{O}\right) (x)$$

Since x = 1.998, dissolving a mol of BiCl₃ will yield 2 mols of particles, so the third equation most consistent with the observed freezing point.

Score