Chem 210 – Exam 3b Spring 2009

Chemistry 210

Name:

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number =
$$6.022 \times 10^{23} \text{ units}/_{mol}$$

 $32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K}$
Density of Water = $1.000^{\text{g}}/_{\text{mL}}$
 $R = 0.08206^{\text{L*atm}}/_{mol*\text{K}} = 8.314^{\text{J}}/_{mol*\text{K}}$
 $PV=nRT$
 $\Delta T_{\text{fp/bp}} = k_{\text{fp/bp}} \cdot \text{m} \cdot \text{i}$
For water: $k_{\text{fp}} = -1.86^{\circ}\text{C}/_{\text{m}}$
 $k_{\text{bp}} = 0.512^{\circ}\text{C}/_{\text{m}}$
 $P_1 = X_1P_1^{\circ}$
 $\Pi = MRTi$
 $C_1V_1 = C_2V_2$

Integrated Rate Laws:

$$ln[A]_{t} = -kt + ln[A]_{o}$$

$$1/[A]_{t} = kt + 1/[A]_{o}$$

$$[A]_{t} = -kt + [A]_{o}$$

$$k = Ae^{-Ea/RT}$$

$$ln(k) = \left(\frac{-E_{a}}{R}\right)\left(\frac{1}{T}\right) + ln(A)$$

$$ln\left(\frac{k_{1}}{k_{2}}\right) = \frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

$$pH = pK_{a} + log\left(\frac{[conjugate base]}{[conjugate acid]}\right)$$

$$\begin{split} E_{cell} &= E_{cell}^{o} - {}^{RT}/{}_{nF} lnQ \\ E_{cell}^{o} &= {}^{RT}/{}_{nF} lnK^{o} \\ K^{o} &= e^{A}({}^{nF}/{}_{RT} E_{cell}^{o}) \\ F &= 96485 {}^{J}/{}_{V \cdot mol \ of \ electrons} \\ \Delta G^{o} &= \Delta H^{o}_{system} - T\Delta S^{o}_{system} \\ \Delta G^{o} &= -nFE_{cell}^{o} &= -RT lnK^{o} \\ \Delta G &= \Delta G^{o} + RT lnQ \\ F &= 96485 {}^{C}/{}_{mol \ electrons} \\ 1A &= 1 \ C / sec \end{split}$$

Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1	1																2
H																	He
1.0079	4	1										5	6	7	8	9	4.0026
Li	Be											B	Č	Ň	Ő	F	Ne
6.941	9.0122											10.811	12.011	14.007	15,999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
												-		-		-	
		58	59	60	61	62	63	64	65	66	67	68	69	70	71]	
		0	D	NT 1	D	a		01		D	TT			X 71	т		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

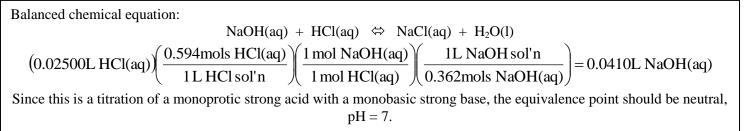
1. Complete each row of the following tables for aqueous solutions at 25°C (4pts per box):

[H ₃ O ⁺]	[OH ⁻]	рН	рОН	Acidic, Basic or Neutral?	
5.182x10 ⁻⁹	1.930x10 ⁻⁶	8.2855	5.7145	basic	
9.840x10 ⁻⁹	1.016x10 ⁻⁶	8.007	5.993	basic	

Conjugate Acid	K _a @25°C	Conjugate Base	K _b @25°C
H_3O^+	1	H_2O	$1.0 \mathrm{x} 10^{-14}$
HSO ₃ -	6.2x10 ⁻⁸	SO ₃ ²⁻	1.6x10 ⁻⁷

2. Explain why each of the following *does not* result in an effective buffer? (15pts) 1.24 mol NH₄NO₃(aq) + 0.03 mol NH₃(aq)

The amounts of conjugate acid (NH_4^+) and conjugate base (NH_3) are too far apart to make an effective buffer. The concentrations should be within a factor of 10 of each other.


0.38mol HI(aq) + 0.38mol NaI(aq)

HI/I⁻ are a conjugate acid/conjugate base pair, but HI is a strong acid so it will not make an effective buffer when combined with its conjugate base.

 $1.28 \text{mol Na}_2\text{CO}_3(\text{aq}) + 0.64 \text{mol NaOH}(\text{aq})$

Carbonate ions *can* be made into an effective buffer by addition of some strong acid to protonate some of the carbonate ions, but in this case a strong *base* is being added, so this will not make an effective buffer.

3. How much 0.362M NaOH(aq) must be added to 25.00mL of 0.594M HCl(aq) to reach the equivalence point? What is the pH of this solution at the equivalence point? (10pts)

Chem 210 – Exam 3b Spring 2009 Name: _

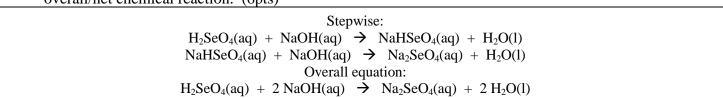
4. Describe how you would prepare 1.00L of a 1.00M buffer at pH 7.15. You have the following reagents available: Nitrous acid (HNO₂, $K_a = 7.2 \times 10^{-4}$), Hydrosulfuric acid (H₂S, $K_a = 1.1 \times 10^{-7}$), Boric acid (H₃BO₃, $K_a = 5.8 \times 10^{-10}$), NaOH(s), distilled/deionized water. (15pts)

Looking at the pK_a's of all the available acids, H_2S has pK_a = 6.96, so it will be the only one that will make an effective buffer at pH = 7.15. To make 1.00L of a 1.00M solution, we'll need...1mol of H_2S , so 34.082g of H_2S . To figure out how much base to add, we need to plug in to the H-H equation:

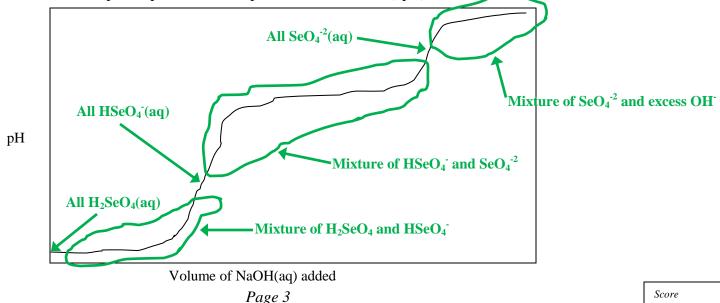
 $7.15 = 6.96 + \log([HS^-] / [H_2S])$ (mols HS⁻) / (mols H₂S) = 1.5488 = x / (1-x) x = 0.608 mols HS⁻ → formed by adding 0.608mols of NaOH → 24.306g NaOH

So add 24.306g NaOH to the 34.082g H₂S and dilute to 1.00L.

5. What is the K_b of a base if 500.0mL of a solution containing 0.228 mol of the base and 0.282 mol of its conjugate acid has a pH of 5.951? Over what pH range would this conjugate acid/ conjugate base pair make an effective buffer? (12pts)


This is an approximately equal mixture of a weak conjugate acid and its conjugate base, so it should be a buffer and we can use the Henderson-Hasselbalch equation to figure out the answer...

$$5.951 = pK_a + log\left(\frac{0.228}{0.282}\right)$$


 $pK_a = 6.043 \rightarrow pK_b = 14 - 6.043 = 7.957 \rightarrow K_b = 1.10 \times 10^{-8}$

A weak conjugate acid/base mixture is a good buffer within 1 pH unit of the pK_a, so this is a good buffer 5.043 \rightarrow 7.043

- 6. You are going to use a titration to determine the concentration of an unknown selenic acid solution (H_2SeO_4 , $pK_a = -7$). The base you have chosen to use is 1.003M sodium hydroxide.
 - a. Write out the chemical equations for the step-wise deprotonation/neutralization of selenic acid and the overall/net chemical reaction. (6pts)

b. Sketch the titration curve you would expect for this titration, labeling all equivalence points and selenic acid-based species present in each portion of the curve. (5pts)

(#6 continued...)

c. Someone left your pH probe laying on the bench and it has dried out. After a short search, you have found the following three visual indicators: Thymolphthalein (TP, endpoint pH range = 9.5-10.5); Bromothymol Blue (BTB, endpoint pH range = 6.0-7.5); 2,4-dinitrophenol (DNP, endpoint pH range = 2.8-4.0). Which of these visual indicators would be useful in your titration? Explain your choices. (10pts)

Since selenic acid is a strong acid (first $pK_a = -7$) being titrated with a strong base, the first equivalence point should be somewhere around neutral, maybe a little on the acidic side, so BTB should be a good indicator for the first equivalence point because its endpoint is slightly acidic to neutral. Selenic acid is diprotic, so there is a second step in the deprotonation, meaning that there will be a second equivalence point. This equivalence point should be on the basic side of neutral, so TP would probably be a good indicator for the second equivalence point because the endpoint of TP is fairly basic.

d. As you are about to start your titration, a package arrives with a new pH probe, so you decide to use the pH probe to monitor your titration. You find that 50.00mL of selenic acid requires 43.94mL of sodium hydroxide to reach the second equivalence point. What is the concentration of the selenic acid solution? (10pts)

Balanced chemical equation to reach the second equivalence point:

$$2 \operatorname{NaOH}(aq) + H_2 \operatorname{SeO}_4(aq) \Leftrightarrow \operatorname{Na}_2 \operatorname{SeO}_4(aq) + 2 \operatorname{H}_2 \operatorname{O}(1)$$

$$(0.04394 \operatorname{L} \operatorname{NaOH}(aq)) \left(\frac{1.003 \operatorname{mols} \operatorname{NaOH}}{1 \operatorname{L} \operatorname{NaOH} \operatorname{sol'n}} \right) \left(\frac{1 \operatorname{mol} \operatorname{H}_2 \operatorname{SeO}_4}{2 \operatorname{mol} \operatorname{NaOH}} \right) \left(\frac{1}{0.05000 \operatorname{L} \operatorname{H}_2 \operatorname{SeO}_4} \right) = 0.4407 \operatorname{M} \operatorname{H}_2 \operatorname{SeO}_4(aq)$$

e. How much sodium hydroxide solution was required to reach the first equivalence point in part "d"? Explain your answer. (4pts)

It should take exactly half as much titrant to get to the first equivalence point as it took to get to the second equivalence point, so it should take 21.97mL of sodium hydroxide solution to reach the first equivalence point.

7. Which solution has a higher concentration of silver(I) ions? Explain your answer. (15pts) Saturated silver(I) chloride, $K_{sp}(AgCl) = 1.77 \times 10^{-10}$

Saturated silver(I) phosphate, $K_{sp}(Ag_3PO_4) = 8.89 \times 10^{-17}$

Writing out K_{sp} equations and expressions for each... $AgCl(s) \Leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$ $K_{sp} = [Ag^{+}][Cl^{-}] = (x)(x) = 1.77x10^{-10}$ $x = 1.33x10^{-5} = [Ag^{+}]$ $Ag_{3}PO_{4}(s) \Leftrightarrow 3 Ag^{+}(aq) + PO_{4}^{-3}(aq)$ $K_{sp} = [Ag^{+}]^{3}[PO_{4}^{-3}] = (3x)^{3}(x) = 27x^{4} = 8.89x10^{-17}$ $x = 4.26x10^{-5}$ $[Ag^{+}] = 1.28x10^{-4} M$ Silver phosphate has a higher concentration of silver(I) ions.