Chemistry 210

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Name:

Avogadro's Number =
$$6.022 \times 10^{23}$$
 ^{units}/_{mol}
 $32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K}$
Density of Water = $1.000^{\text{g}}/_{\text{mL}}$
 $R = 0.08206^{\text{L*atm}}/_{\text{mol*K}} = 8.314^{\text{J}}/_{\text{mol*K}}$
 $PV=nRT$
 $\Delta T_{\text{fp/bp}} = k_{\text{fp/bp}} \cdot \text{m·i}$
For water, $k_{\text{fp}} = -1.86^{\circ}\text{C}/_{\text{m}}$; $k_{\text{bp}} = 0.52^{\circ}\text{C}/_{\text{m}}$
 $P_1 = X_1P_1^{\circ}$
 $P = cRTi$
 $C_1V_1 = C_2V_2$
Quadratic formula:
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Integrated Bote Lewes:

$\mathbf{k} = \mathbf{A}\mathbf{e}^{-\mathrm{Ea/RT}}$
$\ln(k) = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(A)$
$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

v =	
x = -2a	
Integrated Rate I	laws:
0 th order	$[\mathbf{A}]_{t} = -\mathbf{k}t + [\mathbf{A}]_{o}$

Th

232.04

Pa

231.04

U

238.03

Np

237.05

Pu

(244)

Am

(243)

1 st order	$\ln[A]_t =$	$-kt + \ln[A]_{o}$
2 nd order	$1/[A]_t =$	$kt + 1/[A]_o$

1																	2
Η																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305								• •	• •		26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		

Exam 2

Cm

(247)

Bk

(247)

Cf

(251)

Es

(252)

Fm

(258)

Md

(258)

No

(259)

Lr

(260)

Name:

Multiple Choice: Circle the letter of the most correct response. (6pts. per question)

- 1. Which of the following does *not* affect the rate of a reaction?
 - a. The frequency of collisions between reacting particles
 - b. The coefficients of the reactants in the balanced equation
 - c. The temperature of the system
 - d. The orientation of colliding particles
 - e. The energy of collisions between reacting particles
- 2. For the generic equation:

$$aA + bB \rightarrow cC + dD$$

Which of the following is a correct expression of the rate of the reaction:

a. ${}^{-1}/{}_{a} {}^{\Delta[A]}/_{\Delta t}$ **b.** ${}^{-1}/{}_{b} {}^{\Delta[B]}/_{\Delta t}$ **c.** $k[A]^{a}[B]^{b}$ **d.** ${}^{1}/{}_{d} {}^{\Delta[D]}/_{\Delta t}$ **e.** $k[C]^{c}[D]^{d}$ There should have been only 1 correct response, this question was discarded.

3. For the generic equation

 $aA(g) + bB(g) \iff cC(g) + dD(g)$

The value of the equilibrium constant, K_c:

- a. Must be measured, it cannot be derived from the balanced equation
- b. Is equal to $k[A]^{a}[B]^{b}$
- c. Is equal to $([A]^{a}[B]^{b})/([C]^{c}[D]^{d})$
- d. Is not affected by temperature
- e. Is equal to $([C]^{c}[D]^{d})/([A]^{a}[B]^{b})$
- 4. If the rate of a reaction increases by a factor if 4 when the initial concentration of reactant "A" is increased by a factor of 4, the reaction must be:
 - a. 2nd order overall
 - b. 4th order with respect to [A]o
 - c. 1st order with respect to[A]o
 - d. 2nd order with respect to [A]o
 - e. The order of the reaction depends on the balanced chemical equation
- 5. For a first order reaction:
 - a. The slope of the integrated rate law plot is equal to k
 - b. The intercept of the integrated rate law plot is equal to the initial concentration
 - c. The slope of the integrated rate law plot is equal to $(-E_a/R)$
 - d. The intercept of the integrated rate law is equal to the *ln* of the initial concentration
 - e. The slope of the integrated rate law is equal to the frequency factor, A.
- 6. Which of the following is *true* regarding catalysts and catalyzed reactions?
 - a. The presence of a catalyst changes the equilibrium constant for a reaction
 - b. The presence of a catalyst changes the energy of the products and reactants in a reaction
 - c. The presence of a catalyst changes the activation energy for a reaction
 - d. The presence of a catalyst does not change the mechanism of a reaction
 - e. The concentration of a catalyst cannot appear in the rate law for a reaction

- 7. The reaction represented by the plots above:
 - a. Is zero order
 - b. Is first order
 - c. Is second order
 - d. Is third order
 - e. The order can't be determined by these graphs
- 8. Which of the following is *false* regarding equilibrium?
 - a. The concentrations of products and reactants does not change once the reaction has reached equilibrium
 - b. Equilibrium can be shifted by changing pressure or temperature
 - c. The forward and reverse reactions stop when a system reaches equilibrium
 - d. The rates of the forward and reverse reactions are equal
 - e. Equilibrium concentrations do not depend upon whether you approach equilibrium from the left or the right
- 9. Which of the following is *false* regarding reaction mechanisms?
 - a. The steps of the mechanism can contain chemical species that do not appear in the overall correctly balanced chemical equation
 - b. The observed rate law is equal to the sum of the rate laws from all steps
 - c. Catalysts can appear in the steps of a mechanism
 - d. A mechanism must be composed of elementary reactions
 - e. The observed rate law must agree with the rate law of the slowest step
- 10. Which of the following statements is *false* regarding the reaction quotient, *Q*?
 - a. It tells the direction that the reaction must shift to reach equilibrium
 - b. If $Q>K_c$, the system needs to shift toward the reactants to reach equilibrium
 - c. If $Q = K_c$, the system is at equilibrium
 - d. If Q<K_c, the system needs to shift toward the reactants to reach equilibrium
 - e. It has the same mathematical form as the equilibrium constant

Name:

Chem 210 – *Exam 2a* Spring 2008

Multiple Choice Calculations: (12pts each)

- 11. A reaction is found to be first order with respect to reactant A and second order with respect to reactant B. If $[A]_0 = 0.318M$, $[B]_0 = 0.934M$ and $k = 5.49 \times 10^{-5} \text{ M}^{-2} \text{sec}^{-1}$, what is the initial rate of the reaction?
 - a. $1.98 \times 10^{-4} \text{ M}/_{\text{sec}}$

 - b. $1.85 \times 10^{-4} \text{ M/sec}$ c. $1.63 \times 10^{-5} \text{ M/sec}$ d. $1.52 \times 10^{-5} \text{ M/sec}$ e. $5.19 \times 10^{-6} \text{ M/sec}$
- 12. For the reaction:

 $CH_4(g) + H_2O(g) \Leftrightarrow CO(g) + 3 H_2(g) \qquad \Delta H = 206.2 \text{ kJ}_{mol}$ The equilibrium concentrations have been found to be $[CO]_{eq} = 2.22M$, $[H_2]_{eq} = 1.81M$, $[CH_4]_{eq} = 8.81 \times 10^{-5} \text{ M}, [H_2O]_{eq} = 1.53 \times 10^{-2} \text{ M}.$ What is the equilibrium constant? a. 1.02×10^{-7} b. 388 c. 2.98×10^6 d. 8.94×10^6 e. 9.77×10^6

- 13. A reaction is found to be second order with respect to fluoride ion, a reactant. If $[F_{a}]_{a} =$ 2.19M and $k = 1.16 \times 10^{-2} \text{ M}^{-1} \text{sec}^{-1}$, what will the concentration be after 12 minutes have passed?
 - a. 8.81 M
 - b. 1.68 M
 - c. 0.596 M
 - d. 0.127 M
 - e. 0.114 M
- 14. You have found the following value in a table of equilibrium constants at 25°C:

 $Cu^{2+}(aq) + 4 NH_3(aq) \implies [Cu(NH_3)_4]^{2+}(aq)$ $K_c = 1.7 \times 10^{-13}$ What is the equilibrium constant for the reaction:

$$2 [Cu(NH_3)_4]^{2+}(aq) \iff 2 Cu^{2+}(aq) + 8 NH_3(aq)$$

- a. 3.5×10^{25}
- b. 5.9×10^{12}
- c. 2.9×10^{12}
- d. 3.4×10^{-13}
- e. 2.9x10⁻²⁶

Name:

Chem 210 – Exam 2a Spring 2008

Problems: (21pts each)

15. For the reaction:

$$Pb^{2+}(aq) + 4 OH^{-}(aq) \rightarrow [Pb(OH)_4]^{2-}(aq)$$

You have collected the following data at 16.93°C:

What are the rate law and the value of the rate law constant, k, for this reaction? If you redo Experiment 2 at 34.26°C, the rate is 7.53×10^{-2} M/_{sec}. What is the activation energy for this reaction?

Comparing runs 1 and 2, $[OH^-]_0$ doubles, rate doubles, the rxn is 1st order with respect to $[OH^-]_0$ Comparing runs 1 and 3, $[Pb^{2+}]_0$ triples, rate triples, the rxn is 1st order with respect to $[Pb^{2+}]_0$

$$Rate_{o} = k [Pb^{2+}]_{o} [OH^{-}]_{o}$$

Plugging in values to solve for k:

$$k = \frac{\text{Rate}_{0}}{\left[\text{Pb}^{2+}\right]_{0}\left[\text{OH}^{-}\right]_{0}} = \frac{1.16 \times 10^{2} \,\frac{\text{M}}{\text{sec}}}{\left(0.267 \,\text{M}\right)\left(1.621 \,\text{M}\right)} = 2.68 \times 10^{2} \,\frac{1}{\text{M} \cdot \text{sec}}$$

At 34.26°C, the rate law *expression* remains the same, but the value of k changes. Plugging in the new conditions:

$$k = \frac{\text{Rate}_{0}}{[\text{Pb}^{2+}]_{0}[\text{OH}^{-}]_{0}} = \frac{7.53 \times 10^{-2} \, \frac{\text{M}}{\text{sec}}}{(0.267 \,\text{M})(3.242 \,\text{M})} = 8.70 \times 10^{-2} \, \frac{1}{\text{M} \cdot \text{sec}}$$

Plugging in to the comparative form of the Arrhenius equation:

$$\ln\left(\frac{2.68 \times 10^{-2} \frac{1}{M \cdot sec}}{8.70 \times 10^{-2} \frac{1}{M \cdot sec}}\right) = \frac{E_{a}}{8.314 J_{mol \cdot K}} \left(\frac{1}{307.41 K} - \frac{1}{290.08 K}\right) \rightarrow E_{a} = 50.4 \text{ kJ}_{mol}$$

- 16. When 3.512g of nitrogen dioxide {NO₂(g)} and 4.913g of chlorine gas {Cl₂(g)} are sealed together in a 2.000L vessel, they reach equilibrium with nitrogen trichloride {NCl₃(g)} and oxygen {O₂(g)}. If the equilibrium concentration of Cl₂(g) is found to be 3.124×10^{-4} M:
 - a. What are the equilibrium concentrations of all products and reactants?
 - b. What is the value of K_c ?

c Is the reaction Product-favored or reactant-favored?

	$2 \operatorname{NO}_2(g)$	$+ 3 \operatorname{Cl}_2(g) \leftrightarrow$	2 NCl ₃ (g)	$+ 2 O_2(g)$
Initial	3.512g/46.005 ^g / _{mol} /2.000L	4.913g/70.906 ^g /mol/2.000L		
	3.817x10 ⁻² M	3.464x10 ⁻² M	0	0
Δ	-2x	-3x	+2x	+2x
@ Eq	$(3.817 \times 10^{-2} - 2 \times) M$	$(3.464 \times 10^{-2} - 3 \times)$ M	2x M	2x M
	1.523x10 ⁻² M	3.124x10 ⁻⁴ M	2.289x10 ⁻² M	2.289x10 ⁻² M

$$K_{c} = \frac{[NCl_{3}]_{eq}^{2}[O_{2}]_{eq}^{2}}{[NO_{2}]_{eq}^{2}[Cl_{2}]_{eq}^{3}}$$

 $K_c = 3.881 \times 10^7$, product-favored