Chemistry 210

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol R = $8.314 \frac{J}{mol \cdot K}$ $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$ k = Ae^{-Ea/RT} Integrated Rate Laws: [A]_t = -kt + [A]_o $ln[A]_t = -kt + ln[A]_o$ $\frac{ln[A]_t = -kt + ln[A]_o}{\frac{ln[A]_t = -kt + ln[A]_o}{\frac{ln[A]_t = kt + ln[A]_t = kt + ln[A]_o}{\frac{ln[A]_t = kt + ln[A]_o}{\frac{ln[$

$$\ln(k) = \left(\frac{-E_{act}}{R}\right) \left(\frac{1}{T}\right) + \ln(A)$$
$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_{act}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

	_																
1																	2
Η																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Exam 2

Chem 210 – Exam 2 Summer 2005

Multiple Choice (5pts each)

- 1. For a system at equilibrium:
 - a. [reactants]/[products] is the equilibrium constant
 - b. The forward rate constant ($k_{forward}$) is equal to the reverse rate constant ($k_{reverse}$)
 - c. The concentration of products is equal to the concentration of reactants
 - d. The forward rate is equal to the reverse rate
 - e. The reaction stops
- 2. The reaction A(cis) \Rightarrow B(trans) is allowed to come to equilibrium, and the values of the forward and reverse rate constants are measured, $k_{for} = 7.39 \times 10^{-6} \text{ s}^{-1}$ and $k_{rev} = 2.88 \times 10^{-2} \text{ s}^{-1}$. Which of the following graphs is correct for this reaction?

- 3. For a system at equilibrium:
 - a. The forward rate constant $(k_{forward})$ is equal to the reverse rate constant $(k_{reverse})$
 - b. [reactants]/[products] is the equilibrium constant
 - c. The reaction stops
 - d. The forward rate is equal to the reverse rate
 - e. The concentration of products is equal to the concentration of reactants
- 4. Which of the following is the correct equilibrium constant for the reaction?

$$2C_{2}H_{6}(g) + 7 O_{2}(g) \leftrightarrows 4CO_{2}(g) + 6H_{2}O(g)$$

$$[CO_{2}]^{4} + [H_{2}O]^{6} \qquad [C_{2}H_{2}]^{2}[O_{2}]^{7}$$

a.
$$K_{c} = \frac{[CO_{2}]^{4} + [H_{2}O]^{7}}{[C_{2}H_{6}]^{2} + [O_{2}]^{7}}$$

b. $K_{c} = \frac{4[CO_{2}] + 6[H_{2}O]}{2[C_{2}H_{6}] + 7[O_{2}]}$
c. $K_{c} = \frac{[CO_{2}]^{4}[H_{2}O]^{6}}{[C_{2}H_{6}]^{2}[O_{2}]^{7}}$
d. $K_{c} = \frac{(4[CO_{2}])(6[H_{2}O])}{(2[C_{2}H_{6}])(7[O_{2}])}$
e. $K_{c} = \frac{[CO_{2}]^{4}[H_{2}O]^{6}}{[C_{2}H_{6}]^{2}[O_{2}]^{7}}$

- 5. If the value of the equilibrium constant, K_c, is:
 - a. Extremely large, no reaction occurs
 - b. Equal to 1, the reaction has stopped
 - c. Negative, the reaction is spontaneous
 - d. Less than 1, the products and reactants are at the same concentration
 - e. Greater than 1, the equilibrium favors the products
- 6. For the equilibrium reaction:

 $CO(g) + 3 H_2(g) \rightleftharpoons CH_4(g) + H_2O(g) \qquad \Delta H = -206.2^{kJ}/mol$ Which of the following is *false*?

- a. Increasing the pressure will shift this equilibrium to the right
- b. Increasing the temperature will shift this equilibrium to the left
- c. Adding extra hydrogen $\{H_2(g)\}$ will shift this equilibrium to the right
- d. Removing carbon monoxide $\{CO(g)\}$ will shift this equilibrium to the right
- e. The reaction is exothermic
- 7. The reaction quotient for a reaction:
 - a. Tells you how fast the reaction happens
 - b. Is a constant
 - c. Is usually a negative number
 - d. Tells you what direction the reaction must shift to reach equilibrium
 - e. Is the concentration of reactants divided by the concentration of products
- 8. Which of the following is *true* about perturbing a system at equilibrium?
 - a. If there is more than 1 reactant, all of the reactants must be added to shift the reaction toward products
 - b. If more products or reactants are added and all other conditions remain the same, the equilibrium constant will change
 - c. If more reactant is added, the reaction will shift toward products
 - d. Removing products from the reaction will cause the reaction to shift toward reactants
 - e. If one (or more) of the products is a solid (precipitate), the equilibrium constant will be exactly the same as if everything was in solution
- 9. Which of the following statements is *false* regarding the reaction quotient, Q?
 - a. If $Q=K_c$, the system is at equilibrium
 - b. It tells the direction that the reaction must shift to reach equilibrium
 - c. If $Q \le K_c$, the system needs to shift toward the products to reach equilibrium
 - d. It has the same mathematical form as the equilibrium constant
 - e. If $Q>K_c$, the system needs to shift toward the products to reach equilibrium
- 10. Which of the following is *false* regarding the solubility product constant, K_{sp} ?
 - a. A large value for K_{sp} means that the substance is very soluble
 - b. K_{sp} is just an equilibrium constant that applies to a specific system
 - c. If K_{sp} is very small, the substance is insoluble
 - d. The concentration of solids never appears in K_{sp}
 - e. For substances that are extremely insoluble, the value of K_{sp} can be negative

Chem 210 – Exam 2 Summer 2005

11. For the reaction:

 $CH_4(g) + H_2O(g) \implies CO(g) + 3 H_2(g) \quad \Delta H = 206.2 \text{ }^{kJ}_{mol}$ The equilibrium concentrations have been found to be $[CH_4]_{eq} = 5.34 \times 10^{-6} \text{ M}, [H_2O]_{eq} = 1.16 \times 10^{-8} \text{ M}, [CO]_{eq} = 3.35 \times 10^{-5} \text{ M}, [H_2]_{eq} = 8.81 \times 10^{-4} \text{ M}.$

a. What is the equilibrium constant *expression* for this reaction? (10pts)

b. What is the *value* of the equilibrium constant for this reaction? (10pts)

c. If the pressure on this system is changed and it is allowed to re-establish equilibrium, the "new" [CO]_{eq} is 3.47x10⁻⁵ M. What are the new equilibrium concentrations of all species? (15pts)

d. Was the pressure on the system increased or decreased in part c? Explain. (10pts)

Chem 210 – Exam 2 Summer 2005

12. Amino acids are the building blocks of proteins and can exist as either the "amino acid" form or the "zwitterion" form in aqueous solution. The simplest amino acid is glycine:

After taking some careful measurements, it is found that the equilibrium constant for this reaction, K_c , is equal to 2.24×10^7 .

- a. What is the equilibrium constant expression for this reaction? (Use the abbreviation "gly(aa)" for the amino acid form and "gly(z)" for the zwitterions form.) (7pts)
- b. If 62.357g of gly(aa) is dissolved in water to make 500.0mL of solution and allowed to reach equilibrium, what are the equilibrium concentrations of products and reactants, [gly(z)]_{eq} and [gly(aa)]_{eq}? (14pts)

c. After the flask reaches equilibrium, as additional 16.113g of gly(aa) is added. When the system again reaches equilibrium, what are [gly(aa)]_{eq} and [gly(z)]_{eq}? (Assume the total volume of the solution remains at 500.0mL.) (14pts)

Chem 210 – Exam 2 Summer 2005

13. Strontium phosphate has $K_{sp}=3.67 \times 10^{-43}$. What are the concentrations of strontium and phosphate ions in a saturated solution of strontium phosphate? (10pts)

14. You have set up two separate experiments:

Experiment #1: To a saturated solution of silver acetate (AgC₂H₃O₂, K_{sp}=4.4x10⁻³) you have added 0.10 M sodium sulfide {Na₂S(aq)}.

Experiment #2: To a saturated solution of silver sulfide (Ag₂S, K_{sp}= 6.3×10^{-50}) you have added 0.10 M sodium acetate {NaC₂H₃O₂(aq)}.

Will a precipitate form in either, neither or both experiments? Explain. (10pts)

Bonus: Alanine is another amino acid, similar to the glycine shown in problem 12. If the equilibrium constant for $ala(aa) \Rightarrow ala(z)$ is 5.13×10^5 , what *percentage* of alanine is in the amino acid form in a solution that is at equilibrium? (10pts)