Chem 150 – Exam 3a Fall 2013 Chemistry 150

Name:

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$ 1 foot = 12 inches1 inch = 2.54 cm (exactly)1 pound = 453.6 g = 16 ounces $1 \text{ amu} = 1.6605 \text{ x} 10^{-24} \text{ g}$ Masses of subatomic particles: 1.6726x10⁻²⁴ g 1.00728amu = Proton $1.6749 \times 10^{-24} \text{ g}$ Neutron 1.00866amu = Electron 0.000549amu = 9.1094×10^{-28} g Density of Water = $1.000^{\text{g}}/\text{mL}$ $R = 0.08206^{\text{L-atm}}/\text{mol-K}$ PV=nRT 1 calorie = 4.184 J = 0.001 Calorie

$$\begin{split} h &= 6.626 x 10^{-34} \text{ Jsec} \\ \lambda &= {}^{h}\!/_{mv} \\ 1 \text{ J} &= 1 \text{ kg} ({}^{m}\!/_{sec})^{2} \\ c &= \lambda \nu = 3.00 x 10^{8} {}^{m}\!/_{sec} \\ E_{photon} &= h \nu \end{split}$$

	_																
1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	Ο	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
(223)	226.03	(260)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
								-				_				i	

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.03	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)

Name:

Multiple Choice: Circle the letter of the most correct response. (5pts per question)

- 1. The First Law of Thermodynamics states that:
 - a. Kinetic energy is stored in chemical bonds
 - b. Electrostatic energy is another name for electricity
 - c. An element in its "standard" state has no energy
 - d. Energy cannot be created or destroyed
 - e. Potential energy is a measure of the speed of molecular movement
- 2. The specific heat capacity of any substance is:
 - a. The amount of energy required to increase the temperature of one mole of the substance 1°C
 - b. The amount of energy required to increase the temperature of one gram of the substance 1°C
 - c. $4.184 \, {}^{J}/{}_{g^{\bullet}C}$
 - d. The amount of energy required to increase the temperature of one pound of the substance 1°C
 - e. The amount of energy required to increase the temperature of one gram of the substance 1°F
- 3. Which of the following describes an *endothermic* process?
 - a. Chemical bonds are formed
 - b. The reactants have a higher energy than the products of a reaction
 - c. The system absorbs heat from the surroundings
 - d. ΔH is negative
 - e. The system liberates heat to the surroundings
- 4. Which of the following is *not* a possible set of quantum numbers for an electron?
 - a. $n = 1, \ell = 2, m_{\ell} = +1, m_s = +1/2$
 - b. $n = 2, \ell = 0, m_{\ell} = 0, m_s = +1/2$
 - c. n = 3, $\ell = 1$, $m_{\ell} = -1$, $m_s = -1/2$
 - d. $n = 3, \ell = 2, m_{\ell} = +2, m_s = -1/2$
 - e. n = 4, $\ell = 3$, $m_{\ell} = -2$, $m_s = +1/2$
- For each of the following, write out a correct electron configuration. You may use noble gas shorthand notation for species below the 2nd row of the Periodic Table. (7pts each)
- 5. Arsenic (At.# = 33)
- 6. Bromide ion (At.#=35)
- 7. Molybdenum(III) ion (At.#=42)

Problems:

8. The specific heat capacity of limestone is 0.908^J/_{g*°C}. How much energy is needed to heat 25.00kg of limestone from 19.61°C to 23.94°C? (15pts)

Answer 8:

9.	How much energy is required to vaporize 964.28g of ethanol at its boiling point (78.37%	'C)?
	$(\Delta H^{o}_{vaporization} = 38.56^{kJ}/_{mol} \text{ for ethanol}) (15 \text{ pts})$	A

10. You have determined that $\Delta H^{\circ}_{reaction}$ for the reaction of hydrogen and oxygen to produce liquid water is $-571.66^{kJ}/_{mol}$. $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$ What is $\Delta H^{\circ}_{reaction}$ for the following reaction? Explain your answer. (15pts) $6 H_2O(1) \rightarrow 6 H_2(g) + 3 O_2(g)$

11. One potential source of hydrogen gas for use as a fuel is methane by the following reaction:

 $CH_4(g) \rightarrow 2H_2(g) + C(s)$

What is $\Delta H^{o}_{reaction}$ for this process? { $\Delta H_{f}^{o} = -74.87^{kJ}/_{mol}$ for CH₄(g)} How many kJ of energy must be transferred to produce 15.00g of H₂(g)? Is the energy transferred *in* or *out* of the system? Explain. (20pts)

Chem 150 – Exam 3a Fall 2013

12. You have been studying a series of reactions:

$$A \rightarrow B \rightarrow C \rightarrow D$$

So far, you have determined the following ΔH^{o}_{rxn} values:

$$A \rightarrow B -18.39^{kJ}/_{mol}$$

 $C \rightarrow B -26.92^{kJ}/_{mol}$
 $A \rightarrow D +4.27^{kJ}/_{mol}$

What is ΔH°_{rxn} for the the third step, $C \rightarrow D$? Is $C \rightarrow D$ endothermic or exothermic? Draw a qualitatively correct reaction coordinate diagram for the entire stepwise process, $A \rightarrow B \rightarrow C \rightarrow D$. (20pts)

13. You have burned 25.00g of liquid cyclopentane $\{C_5H_{10}(1)\}$ in excess oxygen to produce carbon dioxide and water. If all of the energy from this reaction is transferred to a 41.93kg block of nickel initially at 6.38°C, what is the final temperature of the nickel block? (The specific heat capacity of Ni(s) is $0.461^{J}/_{g^*C}$) (25pts)

Material	$\Delta H_{f}^{o} (^{kJ}/_{mol})$
$C_5H_{10}(l)$	-105.77
$CO_2(g)$	-393.509
$H_2O(g)$	-241.818