Chemistry 150

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
\begin{aligned} &\text{Avogadro's Number} = 6.022 \text{x} 10^{23 \text{ units}}/_{\text{mol}} \\ &32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K} \\ &1 \text{ foot} = 12 \text{ inches} \\ &1 \text{ inch} = 2.54\text{cm (exactly)} \\ &1 \text{ pound} = 453.6 \text{ g} = 16 \text{ ounces} \\ &1 \text{ gallon} = 3.785\text{L} \\ &1 \text{ amu} = 1.6605 \text{x} 10^{-24} \text{ g} \\ &\text{Masses of subatomic particles:} \\ &\text{Proton} \quad 1.00728 \text{amu} = \quad 1.6726 \text{x} 10^{-24} \text{ g} \\ &\text{Neutron} \quad 1.00866 \text{amu} = \quad 1.6749 \text{x} 10^{-28} \text{ g} \\ &\text{Electron} \quad 0.000549 \text{amu} = \quad 9.1094 \text{x} 10^{-28} \text{ g} \\ &\text{R} = 0.08206^{\text{L*atm}}/_{\text{mol*K}} \end{aligned}
```

1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	\mathbf{C}	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	$\mathbf{D}\mathbf{s}$	Rg	Cn						
(223)	226.03	(260)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						1

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.03	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)

Fall 2013

Multiple Choice: Circle the letter of the most correct response. (4pts. per question)

- 1. Under what conditions is a gas *most* "ideal"?
 - a. Low temperature, low pressure
 - b. High temperature, low pressure
 - c. 25°C, 1.00atm
 - d. High temperature, high pressure
 - e. Low temperature, high pressure
- 2. Which mass is *largest*?
 - a. 0.112mg
 - b. 1.62x10⁸ μg
 - c. 7.25g
 - d. $9.37 \times 10^{-9} \text{ kg}$
 - e. 4.38×10^{-7} g
- 3. Different isotopes of an element:
 - a. Have the same number of protons
 - b. Have the same charge
 - c. Have the same number of electrons
 - d. Have the same mass number
 - e. Have the same number of neutrons
- 4. Which of the following formulas is *least ionic*?
 - a. BaF₂
 - b. HgO
 - c. NO_2
 - d. NiI₂
 - e. Mn_2S_3
- 5. The volume of a gas:
 - a. Increases as the temperature increases
 - b. Is constant as the amount of gas is increased
 - c. Is always a constant
 - d. Increases as the pressure increases
 - e. Increases as the kinetic energy decreases

- 6. Which of the following sets of elements contains a metal, a metalloid/semi-metal and a nonmetal?
 - a. As, O, Rb
 - b. Fe, He, Pb
 - c. N, O, Se
 - d. F, Ar, Ti
 - e. K, Mo, U
- 7. Which of the following polyatomic ions has the *most oxygen atoms*?
 - a. sulfate
 - b. hydroxide
 - c. azide
 - d. chlorite
 - e. carbonate
- 8. Which of the following organic molecules has the *most carbon atoms*?
 - a. Methyl amine
 - b. Hexene
 - c. Butanol
 - d. Ethane
 - e. Propyne
- 9. Which of the following is *not* a correct gas law relationship?
 - a. PV = nRT
 - b. $n_1T_1 = n_2T_2$
 - c. $V_1 n_1 = V_2 n_2$
 - d. $P_1V_1 = P_2V_2$
 - e. $P_1 / T_1 = P_2 / T_2$

10. Complete each row of the following table (3pts per box):

Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Atomic Number	Mass Number	Charge
Na	11	<mark>13</mark>	12	11	24	-1
С	<mark>6</mark>	8	9	<mark>6</mark>	14	<mark>-3</mark>
Hf	72	103	68	<mark>72</mark>	175	+4
Sb	51	72	51	51	123	0

Fall 2013

Short Problems: Show your work, your final answer must be written in the "Answer" box to receive full credit.(8pts

11. What is the formula weight of rubidium carbonate? (Atomic # of rubidium = 37)

Rb₂CO₃ $2(85.468^{g}/_{mol}) + 1(12.011^{g}/_{mol}) + 3(15.999^{g}/_{mol}) = 230.944^{g}/_{mol}$ Answer 11:

12. How many silicon atoms are present in a 18.372g sample of silicon (Atomic # = 14)?

 $\{ (18.372 \text{g Si}) / (28.086^{\text{g Si}}/_{\text{mol Si}}) \} (6.022 \times 10^{23 \text{ Si atoms}}/_{\text{mol Si}}) = 3.939 \times 10^{23} \text{ Si atoms} \}$

Answer 12:

13. What is the mass in grams of 0.8493 mols of mercury (Atomic # = 80)?

 $(0.8493 \text{mol Hg}) (200.59^{\text{g Hg}}/_{\text{mol Hg}}) = 170.4 \text{g}$

Answer 13:

14. What is the mass in grams of a sample of argon (Atomic # = 18) that contains 4.187×10^{24} Ar atoms?

 $\{ (4.187 \times 10^{24} \text{ Ar atoms}) / (6.022 \times 10^{23} \text{ Ar atoms}) / (39.948^{g \text{ Ar}} / (200 \text{ Ar})) = 277.8g \}$

Answer 14:

15. An acre of wheat yields 2429 pounds of wheat. What is this mass in milligrams?

 $(2429 \text{ pounds}) (453.6^{\text{g}}/_{\text{pound}}) (1000^{\text{mg}}/_{\text{g}}) = 1.102 \times 10^{9} \text{ mg}$

Answer 15:

16. What is the volume of 5.613mols of ideal gas at 13.34°C and 2.813atm pressure?

PV = nRT(2.813atm) V = (5.613mol) (0.08206 Latm/mol.K) (286.49K)V = 46.91L

Answer 16:

17. You have a 43.582L sample of gas at 12.51°C and 0.978atm. What is the volume of this gas if the pressure is increased to 2.348atm?

 $\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$ $(0.978atm) (43.582L) = (2.248atm) V_2$ $V_2 = 18.2L$

Answer 17:

Problem:

18. You have found a bottle in your lab that contains an unknown mixture of cobalt(II) nitrate and cobalt(III) nitrate. You send the sample for analysis and receive the following results: %Co = 27.729; %N = 16.326; %O = 55.944. Does the sample contain more cobalt(II) nitrate or more cobalt(III) nitrate? What percent of the sample is cobalt(III) nitrate? Explain. (15pts)

Start by determining the percent composition of Co(NO₃)₂ and Co(NO₃)₃

$Co(NO_3)_2$
$182.941^{\rm g}/_{\rm mol}$
$%$ Co = $(58.933^{g}/_{mol}) / (182.941^{g}/_{mol}) =$
32.214% Co
$%N = {2(14.007^{g}/_{mol})} / (182.941^{g}/_{mol}) =$
15.313% N
$\%O = \{6(15.999^{g}/_{mol})\} / (182.941^{g}/_{mol}) =$
52.473% O

Co(NO ₃) ₃
$244.945^{\rm g}/_{\rm mol}$
$%$ Co = $(58.933^{g}/_{mol}) / (244.945^{g}/_{mol}) =$
24.060% Co
$%N = {3(14.007^g/_{mol})} / (244.945^g/_{mol}) =$
17.155% N
$\%O = \{9(15.999^{g}/_{mol})\} / (244.945^{g}/_{mol}) =$
58.785% O

NOTE: We really only needed the %Co to answer this question.

Since the measured %Co in the mixed sample is closer to the %Co in cobalt(III) nitrate, the sample must contain more cobalt(III) nitrate than cobalt(III) nitrate. How much more?

This is a "weighted average" problem. There are only 2 components, so let's say that the fraction of the sample that's cobalt(III) nitrate is "x" and the fraction of the sample that's cobalt(III) nitrate is "1-x".

(value of mixed sample) = (fraction of A)(value of A) + (fraction of B)(value of B)
$$27.729 \% Co = (1-x)(32.214 \% Co) + (x)(24.060 \% Co)$$
$$x = 0.5500$$
The sample is 55.00% cobalt(III) nitrate

Page 4 Score