Chemistry 150 Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = $6.022x10^{23}$ units/mol $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$ 1 foot = 12 inches 1 inch = 2.54cm (exactly) 1 pound = 453.6 g = 16 ounces 1 amu = $1.6605x10^{-24}$ g Masses of subatomic particles: Proton 1.00728amu = $1.6726x10^{-24}$ g Neutron 1.00866amu = $1.6749x10^{-24}$ g Electron 0.000549amu = $9.1094x10^{-28}$ g Density of Water = 1.000^{g} /mL $R = 0.08206^{L*atm}$ /mol*K PV=nRT 1 calorie = 4.184 J = 0.001Calorie

$$\begin{array}{l} h = 6.626x10^{-34} \ Jsec \\ \lambda = {}^{h}/_{mv} \\ 1 \ J = 1 \ kg \left({}^{m}/_{sec} \right)^{2} \\ c = \lambda v = 3.00x10^{8} \ {}^{m}/_{sec} \\ E_{photon} = hv \end{array}$$

1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	$\mathbf{D}\mathbf{s}$	Rg	Cn						
(223)	226.03	(260)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.03	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)

Fall 2011

Multiple Choice: Circle the letter of the most correct response. (5pts. per question)

- 1. The First Law of Thermodynamics states that:
 - a. Kinetic energy is stored in chemical bonds
 - b. Electrostatic energy is another name for electricity
 - c. An element in its "standard" state has no energy
 - d. Energy cannot be created or destroyed
 - e. Potential energy is a measure of the speed of molecular movement
- 2. The specific heat capacity of any substance is:
 - a. The amount of energy required to increase the temperature of one mole of the substance 1°C
 - b. The amount of energy required to increase the temperature of one gram of the substance 1°C
 - c. $4.184^{\text{J}}/_{\text{g}}$ °C
 - d. The amount of energy required to increase the temperature of one pound of the substance 1°C
 - e. The amount of energy required to increase the temperature of one gram of the substance 1°F
- 3. Each of the following describes an *endothermic* process *except*:
 - a. Chemical bonds are broken
 - b. The reactants have a lower energy than the products of a reaction
 - c. The system absorbs heat from the surroundings
 - d. ΔH is positive
 - e. The system liberates heat to the surroundings

Problems:

4. The specific heat capacity of wood is $1.76^{\rm J}_{\rm gs^0C}$. How much energy is needed to heat 450.0g of wood from 9.61°C to 39.19°C? (15pts) Answer 4:

 $q = (1.76^{J}/_{g \cdot \circ C})(450.0g)(39.19-9.61^{\circ}C) = 2.34x10^{4} J$

5. How much energy is released when 800.0g of acetone is frozen at its freezing point (-94°C)? $(\Delta H^{o}_{fusion} = 5.691^{kJ}/_{mol} \text{ for acetone}) (15pts)$

 $E = (5.691 \text{ }^{\text{kJ}}/_{\text{mol}})(1 \text{mol} / 58.079 \text{g})(800.0 \text{g}) = 78.39 \text{kJ}$

Answer 5:

Score Page 2

Fall 2011

6. You have determined that $\Delta H^{o}_{reaction}$ for the reaction of copper(II) ions with ammonia is $-28.16^{kJ}/_{mol}$.

 $\text{Cu}^{2+}(\text{aq}) + 4 \text{ NH}_3(\text{aq}) \rightarrow \left[\text{Cu}(\text{NH}_3)_4\right]^{+2}(\text{aq})$ What is $\Delta \text{H}^{\circ}_{\text{reaction}}$ for the following reaction? Explain your answer. (15pts)

$$2 \left[\text{Cu(NH}_3)_4 \right]^{+2} (\text{aq}) \rightarrow 2 \text{Cu}^{2+} (\text{aq}) + 8 \text{NH}_3 (\text{aq})$$

Reverse and double \rightarrow +56.32 $^{kJ}/_{mol}$

7. One potential source of hydrogen gas for use as a fuel is water by the following reaction:

$$2 H_2O(1) \rightarrow 2 H_2(g) + O_2(g)$$

What is $\Delta H^{o}_{reaction}$ for this process? { $\Delta H_{f}^{o} = -285.83^{kJ}/_{mol}$ for 2 H₂O(l)} How many kJ of energy must be transferred to produce 15.00g of H₂(g)? Is the energy transferred *in* or *out* of the system? Explain. (20pts)

$$\Delta H_{rxn} = +571.66 \, ^{kJ}/_{mol}$$

 $(15.00g H_2(g))(1 mol H_2 / 2.016g H_2) (1 mol rxn / 2 mol H_2) (571.66 MJ/mol) = 2126.7kJ in$

8. You have been studying a series of reactions:

$$A \rightarrow B \rightarrow C \rightarrow D$$

So far, you have determined the following $\Delta H^o_{\ rxn}$ values:

$$A \rightarrow B$$
 +13.38 $^{kJ}/_{mol}$
 $C \rightarrow B$ +19.61 $^{kJ}/_{mol}$
 $D \rightarrow A$ -8.13 $^{kJ}/_{mol}$

What is ΔH^o_{rxn} for the the third step, $C \rightarrow D$? Is $C \rightarrow D$ endothermic or exothermic? Draw a qualitatively correct reaction coordinate diagram for the entire stepwise process, $A \rightarrow B \rightarrow C \rightarrow D$. (20pts)

$$(+8.13~^{kJ}/_{mol}) = (+13.38~^{kJ}/_{mol}) + (-19.61~^{kJ}/_{mol}) + (\Delta H^{\circ}\{C \rightarrow D\}) \\ \Delta H^{\circ}\{C \rightarrow D\} = +14.36~^{kJ}/_{mol}$$

Fall 2011

9. You have burned 25.00g of ethane gas $\{C_2H_6(g)\}$ in excess oxygen to produce carbon dioxide and water. If all of the energy from this reaction is transferred to a 41.93kg block of copper initially at 6.38°C, what is the final temperature of the copper block? (The specific heat capacity of Cu(s) is $0.385^{J}/_{g^{\bullet}C}$) (25pts)

Material	$\Delta H_{\rm f}^{\rm o} (^{\rm kJ}/_{\rm mol})$
$C_2H_6(g)$	-84.68
$CO_2(g)$	-393.509
$H_2O(g)$	-241.818

$$2~C_2H_6(g) + 7~O_2(g) \rightarrow 4~CO_2(g) + 6~H_2O(g) \\ 2(84.68) + 4(-393.509) + 6(-241.818) = -2855.58~^{kJ}/_{mol} \\ (25.00g)(1mol~ethane / 30.069g)~(1mol~rxn / 2mol~ethane)~(2855.58~^{kJ}/_{mol}) = 1187kJ$$

$$1187kJ = (0.000385)(41930g)(\Delta T)$$

 $\Delta T = 73.53$ °C
 $T_{final} = 6.38+73.53 = 79.91$ °C

10. You have reacted 5.123L of oxygen at 36.19°C and 0.912atm with 250.0mL of 0.724M sodium thiocyanate solution by the following reaction:

$$a \text{ NaSCN}(aq) + b \text{ O}_2(g) \rightarrow c \text{ NaCN}(aq) + d \text{ SO}_3(g)$$

How much heat is transferred by this reaction? Is the reaction endothermic or exothermic? (25pts)

. (25 pts)	
Material	$\Delta H_{f}^{o} (^{kJ}/_{mol})$
Na ⁺¹ (aq)	-240.12
SCN ⁻¹ (aq)	-22.92
CN ⁻¹ (aq)	-183.62
SO ₃ (g)	-395.72

2 NaSCN(aq) + 3 O₂(g)
$$\rightarrow$$
 2 NaCN(aq) + 2 SO₃(g)
2 Na⁺(aq) + 2 SCN⁻¹(aq) + 3 O₂(g) \rightarrow 2 Na⁺(aq) + 2 CN⁻¹(aq) + 2 SO₃(g)
2(+22.92) + 2(-183.62) + 2(-395.72) = -1112.84 ^{kJ}/_{mol}
Exothermic

$$\{(5.123L)(0.912atm) \, / \, (0.08206)(309.34K)\} \, (1mol \, rxn \, / \, 3mol \, O_2) \, (1112.84^{kJ}/_{mol}) = 68.3kJ \, heat \, released \, \{(0.2500L)(0.724mols \, SCN^{-1} \, / \, L)\} \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L)\} \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L) \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L) \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L) \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L) \, (1mol \, rxn \, / \, 2mol \, SCN^{-1}) \, (1112.84^{kJ}/_{mol}) = 101 \, kJ \, heat \, released \, (0.2500L)(0.724mols \, SCN^{-1} \, / \, L) \, (0.2500L)(0.724mols \, SCN$$

Oxygen is limiting, 68.3kJ heat released

Score