## Chemistry 150 Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number =  $6.022 \times 10^{23}$  units/mol  $32.00^{\circ}F = 0.000^{\circ}C = 273.15K$ 1 foot = 12 inches 1 inch = 2.54cm (exactly) 1 pound = 453.6 g = 16 ounces 1 amu =  $1.6605 \times 10^{-24}$  g Masses of subatomic particles: Proton 1.00728amu =  $1.6726 \times 10^{-24}$  g Neutron 1.00866amu =  $1.6749 \times 10^{-24}$  g Electron 0.000549amu =  $9.1094 \times 10^{-28}$  g Density of Water =  $1.000^{g}$ /mL  $R = 0.08206^{\text{L*atm}}$ /mol\*K PV=nRT 1 calorie = 4.184 J = 0.001Calorie

$$\begin{array}{l} h = 6.626x10^{-34} \ Jsec \\ \lambda = {}^{h}/_{mv} \\ 1 \ J = 1 \ kg \left( {}^{m}/_{sec} \right)^{2} \\ c = \lambda v = 3.00x10^{8} \ {}^{m}/_{sec} \\ E_{photon} = hv \end{array}$$

| 1      |        |        |        |              |              |        |        |        |        |        |        |        |        |        |        |        | 2      |
|--------|--------|--------|--------|--------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| H      |        |        |        |              |              |        |        |        |        |        |        |        |        |        |        |        | He     |
| 1.0079 |        | _      |        |              |              |        |        |        |        |        |        |        |        |        |        |        | 4.0026 |
| 3      | 4      |        |        |              |              |        |        |        |        |        |        | 5      | 6      | 7      | 8      | 9      | 10     |
| Li     | Be     |        |        |              |              |        |        |        |        |        |        | В      | C      | N      | 0      | F      | Ne     |
| 6.941  | 9.0122 |        |        |              |              |        |        |        |        |        |        | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 |
| 11     | 12     |        |        |              |              |        |        |        |        |        |        | 13     | 14     | 15     | 16     | 17     | 18     |
| Na     | Mg     |        |        |              |              |        |        |        |        |        |        | Al     | Si     | P      | S      | Cl     | Ar     |
| 22.990 | 24.305 |        |        |              |              |        |        |        |        |        |        | 26.982 | 28.086 | 30.974 | 32.066 | 35.453 | 39.948 |
| 19     | 20     | 21     | 22     | 23           | 24           | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     | 33     | 34     | 35     | 36     |
| K      | Ca     | Sc     | Ti     | $\mathbf{V}$ | Cr           | Mn     | Fe     | Co     | Ni     | Cu     | Zn     | Ga     | Ge     | As     | Se     | Br     | Kr     |
| 39.098 | 40.078 | 44.956 | 47.88  | 50.942       | 51.996       | 54.938 | 55.847 | 58.933 | 58.69  | 63.546 | 65.39  | 69.723 | 72.61  | 74.922 | 78.96  | 79.904 | 83.80  |
| 37     | 38     | 39     | 40     | 41           | 42           | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     | 51     | 52     | 53     | 54     |
| Rb     | Sr     | Y      | Zr     | Nb           | Mo           | Tc     | Ru     | Rh     | Pd     | Ag     | Cd     | In     | Sn     | Sb     | Te     | Ι      | Xe     |
| 85.468 | 87.62  | 88.906 | 91.224 | 92.906       | 95.94        | (98)   | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 |
| 55     | 56     | 71     | 72     | 73           | 74           | 75     | 76     | 77     | 78     | 79     | 80     | 81     | 82     | 83     | 84     | 85     | 86     |
| Cs     | Ba     | Lu     | Hf     | Ta           | $\mathbf{W}$ | Re     | Os     | Ir     | Pt     | Au     | Hg     | Tl     | Pb     | Bi     | Po     | At     | Rn     |
| 132.91 | 137.33 | 174.97 | 178.49 | 180.95       | 183.84       | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2  | 208.98 | (209)  | (210)  | (222)  |
| 87     | 88     | 103    | 104    | 105          | 106          | 107    | 108    | 109    | 110    | 111    | 112    | 113    | 114    | 115    | 116    | 117    | 118    |
| Fr     | Ra     | Lr     | Rf     | Db           | Sg           | Bh     | Hs     | Mt     | Ds     | Rg     | Cn     |        |        |        |        |        |        |
| (223)  | 226.03 | (260)  | (261)  | (262)        | (263)        | (262)  | (265)  | (266)  | (269)  | (272)  | (277)  |        |        |        |        |        |        |

| 57     | 58     | 59     | 60     | 61     | 62     | 63     | 64     | 65     | 66     | 67     | 68     | 69     | 70     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| La     | Ce     | Pr     | Nd     | Pm     | Sm     | Eu     | Gd     | Tb     | Dy     | Ho     | Er     | Tm     | Yb     |
| 138.91 | 140.12 | 140.91 | 144.24 | (145)  | 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.94 | 173.04 |
| 89     | 90     | 91     | 92     | 93     | 94     | 95     | 96     | 97     | 98     | 99     | 100    | 101    | 102    |
| Ac     | Th     | Pa     | U      | Np     | Pu     | Am     | Cm     | Bk     | Cf     | Es     | Fm     | Md     | No     |
| 227.03 | 232.04 | 231.04 | 238.03 | 237.05 | (244)  | (243)  | (247)  | (247)  | (251)  | (252)  | (258)  | (258)  | (259)  |

## Fall 2011

Multiple Choice: Circle the letter of the most correct response. (4pts. per question)

1. Consider the following reaction:

$$a \text{ K}_3\text{PO}_3(\text{aq}) + b \text{ Co(NO}_3)_3(\text{aq}) \rightarrow c \text{ CoPO}_3(\text{s}) + d \text{ KNO}_3(\text{aq})$$

For every mol of CoPO<sub>3</sub>(s) that forms, how many mols of K<sub>3</sub>PO<sub>3</sub>(aq) have reacted?

- a. 0.33 mols
- b. 0.5 mols
- c. 1 mol
- d. 2 mols
- e. 3 mols
- 2. Which of the following reactions would form only water and a salt?
  - a.  $HNO_3(aq) + Na_2SO_3(aq)$
  - b.  $HClO_4(aq) + Mg(OH)_2(aq)$
  - c.  $Ni(C_2H_3O_2)_2(aq) + Zn(s)$
  - d.  $HCl(aq) + Pb(NO_3)_2(aq)$
  - e.  $Fe(NO_3)_3(aq) + Mg(OH)_2(aq)$
- 3. Which of the following statements is *true*?
  - a. Oxidation can happen without reduction
  - b. Reduction is losing electrons
  - c. Increasing positive charge is a reduction
  - d. Loss of electrons is reduction
  - e. Oxidizing agents are reduced in a reaction
- 4. In which of the following formulas does phosphorus (P) have the *lowest* oxidation number?
  - a.  $H_3P(g)$
  - b. **P**(s)
  - c.  $PO_4^{3}$ -(aq)
  - d.  $Na_3PO_3(s)$
  - e.  $PF_5(1)$
- 5. Which of the following would you expect to be *soluble* in water?
  - a.  $AgC_2H_3O_2$
  - b. BaSO<sub>4</sub>
  - c.  $Mg_3(PO_4)_2$
  - d.  $Pb(OH)_2$
  - e. CrCO<sub>3</sub>
- 6. Consider the following reaction:

$$Mn(NO_3)_2(aq) + Ni(s) \rightarrow Ni(NO_3)_2(aq) + Mn(s)$$

What is being *oxidized* in this reaction?

- a.  $Mn(NO_3)_2(aq)$
- b. Ni(s)
- c.  $Ni(NO_3)_2(aq)$
- d. Mn(s)
- e. This is not a redox reaction

| Chem 150 - | Exam | 2 <i>a</i> |
|------------|------|------------|
| Fall 2011  |      |            |

| Name: |  |
|-------|--|
|       |  |

**Chemical Equations:** For each of the following, write a correctly balanced chemical equation, identify the reaction type, and write the net ionic equation. Be sure to include state labels. (12pts each)

Potassium sulfide (aq) + Cobalt(III) acetate(aq)  $\rightarrow$  Cobalt(III) sulfide + Potassium acetate {Cobalt atomic # = 27}

Sulfuric acid(aq) + Ammonium hydroxide(aq) → Ammonium sulfate + Water

## **Problems:**

- 10. You have diluted 25.0mL of a 0.993M solution of copper(II) acetate with enough water to make 125.0mL of solution. What is the new concentration of *acetate ions* in this solution? (8pts)

  Answer 10:
- 11. You have dissolved 10.00g of calcium nitrate in enough water to make 150.00mL of solution. What is the concentration of the resulting solution? (8pts)

  Answer 11:
- 12. You have titrated 25.00mL of an unknown stock potassium hydroxide solution to the equivalence point with 42.96mL of 1.183M nitric acid. What is the concentration of the stock potassium hydroxide solution? (15pts)

Answer 12:

13. How many grams of sodium carbonate solid are required to react with 35.88g of nitric acid? (12pts)

Answer 13:

14. You would like to prepare 25.00g of lead(II) bromide solid. How many grams of potassium bromide are required if you have unlimited lead(II) nitrate solution? (12pts)

Answer 14:

15. You would like to produce 50.00L of hydrogen gas at 14.39°C and 1.852atm by the following reaction:  $a \operatorname{Ru}(s) + b \operatorname{HClO}_4(aq) \rightarrow c \operatorname{H}_2(g) + d \operatorname{Ru}(\operatorname{ClO}_4)_3(aq)$ 

How many milliliters of 1.283M perchloric acid solution are required to produce 50.00L of  $H_2(g)$ ? How many grams of Ru(s) are required to produce 50.00L of  $H_2(g)$ ? (20pts)

16. 75.0mL of 1.552M barium(II) acetate solution is combined with 75.0mL of 1.334M sodium phosphate solution. Write a correctly balanced equation and net ionic equation for the reaction that takes place. How many grams of precipitate can this reaction form? You recover 14.938g of precipitate. What is the percent yield? (20pts)

Score