Chemistry 150 Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
Avogadro's \ Number = 6.022x10^{23}\ ^{units}/_{mol} 32.00°F = 0.000°C = 273.15K 1 \ foot = 12 \ inches 1 \ inch = 2.54cm \ (exactly) 1 \ pound = 453.6 \ g = 16 \ ounces 1 \ gallon = 3.785L 1 \ amu = 1.6605x10^{-24} \ g Masses \ of \ subatomic \ particles: Proton \qquad 1.00728amu = \qquad 1.6726x10^{-24} \ g Neutron \qquad 1.00866amu = \qquad 1.6749x10^{-24} \ g Electron \qquad 0.000549amu = \qquad 9.1094x10^{-28} \ g R = 0.08206^{L*atm}/_{mol*K}
```

1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	$\mathbf{D}\mathbf{s}$	Rg	Cn						
(223)	226.03	(260)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.03	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)

Multiple Choice: Circle the letter of the most correct response. (4pts. per question)

- 1. Under what conditions is a gas *least* "ideal"?
 - a. Low temperature, low pressure
 - b. High temperature, low pressure
 - c. 25°C, 1.00atm
 - d. High temperature, high pressure
 - e. Low temperature, high pressure
- 2. Which distance is *smallest*?
 - a. 0.112mm
 - b. $1.62 \times 10^8 \, \mu m$
 - c. 7.25m
 - d. 9.37x10⁻⁹ km
 - e. $4.38x10^{-7}$ m
- 3. Different isotopes of an element:
 - a. Have the same number of protons
 - b. Have the same charge
 - c. Have the same number of electrons
 - d. Have the same mass number
 - e. Have the same number of neutrons
- 4. Which of the following formulas is *most ionic*?
 - $a. BaF_2$
 - b. HgO
 - c. NO₂
 - d. NiI₂
 - e. Mn₂S₃
- 5. The volume of a gas:
 - a. Decreases as the temperature increases
 - b. Is constant as the amount of gas is increased
 - c. Is always a constant
 - d. Decreases as the pressure increases
 - e. Increases as the kinetic energy decreases

- 6. Which of the following sets of elements contains a metal, a metalloid/semi-metal and a nonmetal?
 - a. As, O, Rb
 - b. Fe, He, Pb
 - c. N, O, Se
 - d. F, Ar, Ti
 - e. K, Mo, U
- 7. Which of the following polyatomic ions has the *most oxygen atoms*?
 - a. phosphate
 - b. hydroxide
 - c. cyanide
 - d. hypochlorite
 - e. nitrate
- 8. Which of the following organic molecules has the *fewest carbon atoms*?
 - a. Methyl amine
 - b. Hexene
 - c. Butanol
 - d. Ethane
 - e. Propyne
- 9. Which of the following is *not* a correct gas law relationship?
 - a. PV = nRT
 - b. $n_1T_1 = n_2T_2$
 - $c. \quad V_1 n_1 = V_2 n_2$
 - d. $P_1V_1 = P_2V_2$
 - e. $P_1 / T_1 = P_2 / T_2$

10. Complete each row of the following table (3pts per box):

Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Atomic Number	Mass Number	Charge
<mark>N</mark>	7	8	<u>10</u>	7	15	-3
Ca	20	<u>19</u>	20	20	39	0
Bi	83	125	80	83	208	+3
Mg	12	13	12	12	25	0

Fall 2011

Short Problems: Show your work, your final answer must be written in the "Answer" box to receive full credit.(8pts each)

11. What is the formula weight of strontium nitrate? (Atomic # of strontium = 38)

 $Sr(NO_3)_2 \rightarrow 87.62 + 2(14.007) + 6(15.999) = 211.628$

Answer 11:

 $211.628^{g}/_{mol}$

12. How many sodium atoms are present in a 14.192g sample of sodium (Atomic # = 11)?

 $(14.192g)(1\text{mol}/22.990g)(6.022x10^{23 \text{ atoms}}/_{\text{mol}}) = 3.717x10^{23} \text{ Na atoms}$

Answer 12:

 3.717×10^{23} Na atoms

13. What is the mass in grams of 0.914mols of aluminum (Atomic # = 13)?

 $(0.914 \text{mols Al})(26.982^{\text{g}}/_{\text{mol}}) = 24.7 \text{grams}$

Answer 13:

24.7grams

14. What is the mass in grams of a sample of krypton (Atomic # = 36) that contains 6.81×10^{22} Kr atoms?

 $(6.81 \times 10^{22} \text{ Kr atoms})(1 \text{mol}/6.022 \times 10^{23} \text{ Kr atoms})(83.80^{g}/_{\text{mol}}) = 9.48g$

Answer 14:

9.48g

15. A new Ford F-150 has a 36.28 gallon fuel tank. What is this volume in milliliters?

 $(36.28\text{gal})(3.785^{\text{L}}/_{\text{gal}})(1000^{\text{mL}}/_{\text{L}}) = 1.373\text{x}10^5 \text{ mL}$

Answer 15:

 $1.373 \times 10^5 \text{ mL}$

16. What is the volume of 3.118mols of ideal gas at 18.62°C and 0.4382atm pressure?

 $\begin{array}{l} (0.4382atm)V = (3.118mols)(0.08206^{\text{L•atm}}/_{\text{mol•K}})(18.62 + 273.15K) \\ V \ = \ 170.4L \end{array}$

Answer 16:

170.4L

17. You have a 24.92L sample of gas at 45.18°C and 1.002atm. What is the volume of this gas if the temperature is decreased to 2.76°C?

 $V_1/T_1 = V_2/T_2$ (24.92L) / (45.18+273.15K) = $V_2/(2.76+273.15K)$ $V_2 = 21.60L$ Answer 17:

21.60L

Chem	150 -	- Exam	<i>1a</i>
Fall 2	011		

Name: _____

Problem:

18. You are working in a food production facility and have found an unlabelled barrel. From inventory records, you know that it is either fructose which has a molecular weight of about $180^g/_{mol}$ or ethyl benzoate which has a molecular weight of about $150^g/_{mol}$. You send a sample for analysis and receive the following results: %C = 71.98, %H = 6.711, %O = 21.31. What is the *empirical* formula of this substance? What is the molecular weight of this empirical formula? Does the barrel contain fructose or ethyl benzoate? Explain. (15pts)

C →
$$71.98g/12.011^g/_{mol} = 5.993 mols$$
 → 4.5 → 9
H → $6.711g/1.0079^g/_{mol} = 6.658 mols$ → 5 → 10
O → $21.31g/15.999^g/_{mol} = 1.332 mols$ → 1 → 2

Empirical formula = $C_9H_{10}O_2 \rightarrow 150.176^g/_{mol}$

Since the molecular formula must be a multiple of the empirical formula, the barrel must contain ethylbenzoate.

Page 4 Score