Chem 150 – *Exam 3a* Fall 2010 **Chemistry 150**

Name:

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol $32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K}$ 1 foot = 12 inches1 inch = 2.54 cm (exactly)1 pound = 453.6 g = 16 ounces $1 \text{ amu} = 1.6605 \text{ x} 10^{-24} \text{ g}$ Masses of subatomic particles: Proton 1.00728amu = 1.6726×10^{-24} g Neutron 1.00866amu = 1.6749×10^{-24} g Electron 0.000549amu = 9.1094×10^{-28} g Density of Water = $1.000^{g}/_{mL}$ R = $0.08206^{L \cdot atm}/_{mol \cdot K}$ PV=nRT 1 calorie = 4.184 J = 0.001 Calorie

1																	2
H																	He
1.0079		_															4.0026
3	4											5	6	7	8	9	10
Li	Be											B	С	Ν	0	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
-														-		-	
		58	59	60	61	62	63	64	65	66	67	68	69	70	71	1	
		Ce	Pr	Nd	Pm	Sm 150.36	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		140.12 90	140.91 91	144.24 92	(145) 93	94	151.97 95	157.25 96	158.93 97	162.50 98	164.93 99	167.26 100	168.94 101	173.04 102	174.97 103	1	
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)	J	

Score

Chem 150 - Exam 3aName:Fall 2010Multiple Choice: Circle the letter of the most correct response. (6pts. per question)

- 1. The First Law of Thermodynamics states that:
 - a. Kinetic energy is stored in chemical bonds
 - b. Electrostatic energy is another name for electricity
 - c. An element in its "standard" state has no energy
 - d. Energy cannot be created or destroyed
 - e. Potential energy is a measure of the speed of molecular movement
- 2. The specific heat capacity of a substance is:
 - a. The amount of energy required to increase the temperature of one mole of the substance 1°C
 - b. The amount of energy required to increase the temperature of one gram of the substance 1° C $_{\circ}$
 - c. $4.184 \, J_{g^{\circ}C}$
 - d. The amount of energy required to increase the temperature of one pound of the substance $1^{\circ}C$
 - e. The amount of energy required to increase the temperature of one gram of the substance 1°F
- 3. Each of the following describes an *endothermic* process *except*:
 - a. Chemical bonds are broken
 - b. The reactants have a lower energy than the products of a reaction
 - c. The system absorbs heat from the surroundings
 - d. ΔH is positive
 - e. The system liberates heat to the surroundings
- 4. Is each of the following processes endothermic or exothermic? (3pts each)

Splitting water to form $H_2(g)$ and $O_2(g)$	Endothermic	Exothermic
Burning butane in air	Endothermic	Exothermic
Boiling liquid methanol	Endothermic	Exothermic
Freezing water	Endothermic	Exothermic

Problems:

5. Beryllium oxide (BeO) can be converted to strontium metal by the following reaction:

$$2 \operatorname{BeO}(s) \rightarrow 2 \operatorname{Be}(s) + \operatorname{O}_2(g)$$

What is $\Delta H^{\circ}_{reaction}$ for this process? ($\Delta H_{f}^{\circ} = -609.4 \text{ }^{kJ}/_{mol}$ for BeO.) How many kJ of energy must be transferred to produce 15.00g of Be(s)? Is the energy transferred *in* or *out* of the system? Explain. (20pts)

Chem 150 – Exam 3a Fall 2010

6. The specific heat capacity of liquid water is 4.184^J/_{g*C}. How much energy is needed to heat 450.0g of liquid water from 7.61°C to 29.19°C? (20pts)

7. How much energy is released when 800.0g of water is condensed at its boiling point (100°C)? $(\Delta H^{\circ}_{vaporization} = 40.64 \text{ }^{kJ}/_{mol} \text{ for water}) (15 \text{ pts})$

9. You have been studying a series of reactions:

 $\begin{array}{c} A \rightarrow B \rightarrow C \rightarrow D \\ \text{So far, you have determined the following } \Delta H^{o}_{rxn} \text{ values:} \\ A \rightarrow B & -31.92 \\ C \rightarrow B & -41.91 \\ C \rightarrow D & -8.13 \\ ^{kJ}/_{mol} \end{array}$

What is ΔH°_{rxn} for the overall reaction, $A \rightarrow D$? Is $A \rightarrow D$ endothermic or exothermic? Draw a qualitatively correct reaction coordinate diagram for the entire stepwise process, $A \rightarrow B \rightarrow C \rightarrow D$. (20pts)

Name: _

Chem 150 – *Exam 3a*

Fall 2010 8. You have determined that $\Delta H^{\circ}_{reaction}$ for the reaction of calcium oxide with carbon dioxide gas is $-178.3^{kJ}/_{mol}$. CaO(s) + CO₂(g) \rightarrow CaCO₃(s) What is $\Delta H^{\circ}_{reaction}$ for the following reaction? Explain your answer. (15pts) $3 \text{ CaCO}_3(s) \rightarrow 3 \text{ CaO}(s) + 3 \text{ CO}_2(g)$

10. You have burned 25.00g of methane gas {CH₄(g)} in excess oxygen to produce carbon dioxide and water. If all of the energy from this reaction is transferred to a 39.67kg block of iron initially at 12.83°C, what is the final temperature of the iron block? (The specific heat capacity of Fe(s) is $0.451^{J}/_{g^{\bullet}C}$) (30pts)

Material	$\Delta H_{f}^{o} (^{kJ}/_{mol})$
CH ₄ (g)	-74.61
$CO_2(g)$	-393.509
$H_2O(g)$	-241.818