Name: _____ ## Chemistry 150 Exam 1 Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer. ``` Avogadro's Number = 6.022 \times 10^{23} units/mol 32.00^{\circ}F = 0.000^{\circ}C = 273.15K 1 foot = 12 inches 1 inch = 2.54cm (exactly) 1 pound = 453.6 g = 16 ounces 1 gallon = 3.785L 1 amu = 1.6605 \times 10^{-24} g Masses of subatomic particles: Proton 1.00728amu = 1.6726 \times 10^{-24} g Neutron 1.00866amu = 1.6749 \times 10^{-24} g Electron 0.000549amu = 9.1094 \times 10^{-28} g ``` | 1 | 1 | | | | | | | | | | | | | | | | 2 | |--|---|---|--|--|---|---|--|---|---|--|---|--|---|--|---|---|---| | Н | | | | | | | | | | | | | | | | | He | | 1.0079 | | | | | | | | | | | | | | | | | 4.0026 | | 3 | 4 | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | | | | | | | | | В | C | N | О | \mathbf{F} | Ne | | 6.941 | 9.0122 | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | | | | | | | | | | | | Al | Si | P | S | Cl | | | | Mg | | | | | | | | | | | 26.982 | 28.086 | ■ 30.974 | | 35.453 | Ar | | 22.990
19 | 24.305 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 32.066 | 35.453 | 39.948 | | | - | | 22 | 23 | ∠+ | 23 | 20 | 21 | 20 | 23 | 30 | 31 | 32 | 33 | 54 | 33 | 30 | | | | ~ | FET.9 | T 7 | \sim | 3.4 | - | _ | 3 ⊤• | ~ | - | ~ | | | - | - | T 7 | | K | Ca | Sc | Ti | \mathbf{V} | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | K
39.098 | Ca | Sc 44.956 | Ti 47.88 | V 50.942 | Cr 51.996 | Mn 54.938 | Fe 55.847 | Co 58.933 | Ni 58.69 | Cu 63.546 | Zn 65.39 | Ga
69.723 | Ge 72.61 | As 74.922 | Se 78.96 | Br
79.904 | Kr 83.80 | | l l | | | | | | | | | | | | | | | | | | | 39.098
37 | 40.078 | 44.956
39 | 47.88
40 | 50.942 | 51.996 | 54.938 | 55.847
44 | 58.933
45 | 58.69
46 | 63.546
47 | 65.39
48 | 69.723
49 | 72.61
50 | 74.922
51 | 78.96
52 | 79.904
53 | 83.80
54 | | 39.098 | 40.078 | 44.956 | 47.88 | 50.942 | 51.996 | 54.938 | 55.847 | 58.933 | 58.69 | 63.546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | 39.098
37
Rb | 38
Sr | 39
Y | 47.88
40
Zr | 50.942
41
Nb | 51.996
42
Mo | 54.938
43
Tc | 55.847
44
Ru | 58.933
45
Rh | 58.69
46
Pd | 63.546
47
Ag | 65.39
48
Cd | 69.723
49
In | 72.61
50
Sn | 74.922
51
Sb | 78.96
52
Te | 79.904
53
I | 83.80
54
Xe | | 39.098
37
Rb
85.468
55 | 40.078
38
Sr
87.62
56 | 44.956
39
Y
88.906
57 | 47.88
40
Zr
91.224
72 | 50.942
41
Nb
92.906
73 | 51.996
42
Mo
95.94
74 | 54.938
43
Tc
(98)
75 | 55.847
44
Ru
101.07
76 | 58.933
45
Rh
102.91
77 | 58.69
46
Pd
106.42
78 | 63.546
47
Ag
107.87
79 | 65.39
48
Cd
112.41
80 | 69.723
49
In
114.82
81 | 72.61
50
Sn
118.71
82 | 74.922
51
Sb
121.76
83 | 78.96
52
Te
127.60
84 | 79.904
53
I
126.90
85 | 83.80
54
Xe
131.29
86 | | 39.098
37
Rb
85.468
55
Cs | 38
Sr
87.62
56
Ba | 44.956
39
Y
88.906
57
La | 47.88
40
Zr
91.224
72
Hf | 50.942
41
Nb
92.906
73
Ta | 51.996
42
Mo
95.94
74
W | 54.938
43
Tc
(98)
75
Re | 55.847
44
Ru
101.07
76
Os | 58.933
45
Rh
102.91
77
Ir | 58.69
46
Pd
106.42
78
Pt | 63.546
47
Ag
107.87
79
Au | 65.39
48
Cd
112.41
80
Hg | 69.723
49
In
114.82
81
Tl | 72.61
50
Sn
118.71
82
Pb | 74.922
51
Sb
121.76
83
Bi | 78.96
52
Te
127.60
84
Po | 79.904
53
I
126.90
85
At | 83.80
54
Xe
131.29
86
Rn | | 39.098
37
Rb
85.468
55
Cs
132.91 | 38
Sr
87.62
56
Ba
137.33 | 39
Y
88.906
57
La
138.91 | 47.88
40
Zr
91.224
72
Hf
178.49 | 50.942
41
Nb
92.906
73
Ta
180.95 | 51.996
42
Mo
95.94
74
W
183.84 | 54.938
43
Tc
(98)
75
Re
186.21 | 55.847
44
Ru
101.07
76
Os
190.23 | 58.933
45
Rh
102.91
77
Ir
192.22 | 58.69 46 Pd 106.42 78 Pt 195.08 | 63.546
47
Ag
107.87
79
Au
196.97 | 65.39
48
Cd
112.41
80
Hg
200.59 | 69.723
49
In
114.82
81 | 72.61 50 Sn 118.71 82 Pb 207.2 | 74.922
51
Sb
121.76
83 | 78.96 52 Te 127.60 84 Po (209) | 79.904
53
I
126.90
85 | 83.80
54
Xe
131.29
86 | | 39.098
37
Rb
85.468
55
Cs
132.91
87 | 38
Sr
87.62
56
Ba
137.33
88 | 39
Y
88.906
57
La
138.91
89 | 47.88
40
Zr
91.224
72
Hf
178.49
104 | 50.942
41
Nb
92.906
73
Ta
180.95 | 51.996
42
Mo
95.94
74
W
183.84
106 | 54.938
43
Tc
(98)
75
Re
186.21
107 | 55.847 44 Ru 101.07 76 Os 190.23 108 | 58.933
45
Rh
102.91
77
Ir
192.22
109 | 58.69
46
Pd
106.42
78
Pt | 63.546
47
Ag
107.87
79
Au | 65.39
48
Cd
112.41
80
Hg | 69.723
49
In
114.82
81
Tl | 72.61
50
Sn
118.71
82
Pb | 74.922
51
Sb
121.76
83
Bi | 78.96
52
Te
127.60
84
Po | 79.904
53
I
126.90
85
At | 83.80
54
Xe
131.29
86
Rn | | 39.098
37
Rb
85.468
55
Cs
132.91 | 38
Sr
87.62
56
Ba
137.33 | 39
Y
88.906
57
La
138.91 | 47.88
40
Zr
91.224
72
Hf
178.49 | 50.942
41
Nb
92.906
73
Ta
180.95 | 51.996
42
Mo
95.94
74
W
183.84 | 54.938
43
Tc
(98)
75
Re
186.21 | 55.847
44
Ru
101.07
76
Os
190.23 | 58.933
45
Rh
102.91
77
Ir
192.22 | 58.69 46 Pd 106.42 78 Pt 195.08 | 63.546
47
Ag
107.87
79
Au
196.97 | 65.39
48
Cd
112.41
80
Hg
200.59 | 69.723
49
In
114.82
81
Tl | 72.61 50 Sn 118.71 82 Pb 207.2 | 74.922
51
Sb
121.76
83
Bi | 78.96 52 Te 127.60 84 Po (209) | 79.904
53
I
126.90
85
At | 83.80
54
Xe
131.29
86
Rn | | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------|--------|--------|--------|--------|--------|--------|------------------------|--------|--------|--------|--------|--------|--------| | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.94 | 173.04 | 174.97 | | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | Th | Pa | U | Np | Pu | Am | Cm | $\mathbf{B}\mathbf{k}$ | Cf | Es | Fm | Md | No | Lr | | 232.04 | 231.04 | 238.03 | 237.05 | (244) | (243) | (247) | (247) | (251) | (252) | (258) | (258) | (259) | (260) | ## Fall 2010 **Multiple Choice:** Circle the letter of the most correct response. (5pts. per question) - 1. Which of the following sets of elements contains a metal, a metalloid and a nonmetal? - a. Mg, Ru, Pb - b. Cu, Te, N - c. Na, Sr, Co - d. F, Ar, Ti - e. P, I, Ne - 2. Which of the following organic molecules has the *most carbon atoms*? - a. Methyl amine - b. Hexene - c. Butanol - d. Ethane - e. Propyne - 3. Which of the following formulas is *most ionic*? - a. PbO - b. RbBr - c. Fe_2S_3 - d. SF₆ - e. FrCl - 4. Different isotopes of an element: - a. Have the same number of protons - b. Have the same charge - c. Have the same number of electrons - d. Have the same mass number - e. Have the same number of neutrons - 5. Which of the following represents the *smallest mass*? - a. 0.112mg - b. $1.62 \times 10^8 \, \mu g$ - c. 7.25g - d. $9.37 \times 10^{-9} \text{ kg}$ - e. 4.38×10^{-7} g - 6. Which of the following polyatomic ions has the *fewest oxygen atoms*? - a. phosphite - b. hydroxide - c. cyanide - d. perchlorate - e. nitrite Fall 2010 7. Complete each row of the following table (3pts per box): | Symbol | Number of
Protons | Number of
Neutrons | Number of
Electrons | Atomic
Number | Mass
Number | Charge | |--------|----------------------|-----------------------|------------------------|------------------|----------------|--------| | | | | | 15 | 33 | 0 | | Fe | | | 23 | | 57 | | | | 34 | 46 | 36 | | | | | Cu | | 37 | 29 | | | | ## **Multiple Choice Calculations** (9pts each): - 8. What is the formula weight of rubidium carbonate? (Atomic # of rubidium = 37) - a. $97.479^{g}/_{mol}$ - b. 145.476 ^g/_{mol} - c. 230.944 g/mol - d. 246.943 g/mol - e. $316.412^{g}/_{mol}$ - 9. How many vanadium atoms are present in a 17.681g sample of vanadium (Atomic # = 23)? - a. 0.3471 atoms - b. 406.7 atoms - c. 2.090x10²³ atoms d. 4.629x10²³ atoms e. 6.022x10²³ atoms - 10. 3.116mols of phosphorus (Atomic #=15) has a mass of how many grams? - a. 0.1006 g - b. 9.940 g - c. 30.974 g - d. 46.74 g - e. 96.51 g - 11. What is the mass of a sample of zirconium (Atomic # = 40) that contains 1.31×10^{24} Zr atoms? - a. 2.18 g - b. 87.0 g - c. 198 g - d. 8.65x10⁴⁵ g e. 7.20x10⁴⁹ g | Chem 150 – Exam | <i>1a</i> | |-----------------|-----------| | Fall 2010 | | - 12. The flow of the Red River yesterday was approximately 2.434x10⁴ gallons every second. What is this volume in milliliters? - a. 6.431mL - b. 92.13mL - c. $6.431 \times 10^6 \text{mL}$ - d. $2.434 \times 10^7 \text{mL}$ - e. $9.213 \times 10^7 \text{mL}$ ## **Problems:** 13. The element Ubiquium (Ub) is found in all interstellar space and has two stable isotopes. ³⁸²Ub has a mass of 382.993amu and 18.374% abundant. If the average atomic mass of Ub is 385.114amu, what is the mass of the other isotope? (13pts) 14. You are working in a facility that produces a new energy drink and have found a barrel of one of the ingredients, but the label has fallen off. From inventory records, you know that it is either aspartame which has a molecular weight near $300^g/_{mol}$ or niacin which has a molecular weight of about $125^g/_{mol}$. You send a sample for analysis and receive the following results: %C = 57.14, %H = 6.16, %N = 9.52, %O = 27.18. What is the *empirical* formula of this substance? What is the molecular weight of this empirical formula? Does the barrel contain aspartame or niacin? Explain. (14pts) Page 4