Chem 150 – *Exam 3a* Fall 2009 **Chemistry 150**

Name:

Exam 3

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = 6.022×10^{23} units/mol $32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K}$ 1 foot = 12 inches1 inch = 2.54 cm (exactly)1 pound = 453.6 g = 16 ounces $1 \text{ amu} = 1.6605 \text{ x} 10^{-24} \text{ g}$ Masses of subatomic particles: Proton 1.00728amu = 1.6726×10^{-24} g Neutron 1.00866amu = 1.6749×10^{-24} g Electron 0.000549amu = 9.1094×10^{-28} g Density of Water = $1.000^{g}/_{mL}$ R = $0.08206^{L \cdot atm}/_{mol \cdot K}$ PV=nRT 1 calorie = 4.184 J = 0.001 Calorie

1																	2
н																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Re											R	С	N	0	F	Ne
6 941	9.0122											10.811	12 011	14.007	15 999	18 998	20.180
11	12											13	14	15	16	17	18
No	Ma											A 1	C;	D	C	CI	Ar
1 \a	1 VI <u>9</u>											AI 26.082	28.086	20.074	22.066	25.452	AI 20.048
19	24.303	21	22	23	24	25	26	27	28	29	30	31	32	30.974	32.000	35.455	39.940
V	Co	Se	т;	V	Cn	<u>М</u> .,	Fo	Co	NI	C ₁₁	7 n	Co	Co	Åc	So	Dn	V n
20.009	Ua	SC	47.00	V	51.006	IVIII 54.029	TC	58.022	1 11	Cu	Z 11	Ga	72.61	AS 74.022	78.06	DI 70.004	NI 92.90
39.098	38	39	47.88	41	42	43	44	45	46	47	48	49	50	51	52	^{79.904}	54
DL	50 C	X 7	7	NL	Ma	Ta	D	DL	DJ	4 <i>/</i>	CJ	T	S	Ch	Te	T	Va
KD	Sr	ľ	Δr	IND	IVIO	IC	Ku	Kn	Pa	Ag	Ca	In	50	20	le	L	ле
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	01	118.71	121.76	127.60	126.90	131.29
55 C	- 30 - D		12	75	74	73 D	70		78	/9	80 TT	01	02 DI	03 D:	04 D	0.5	00 D
Cs	Ва	La	HI	Ta	W	Ke	Os	Ir	Pt	Au	Hg	11	Pb	Bı	Po	At	Kn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
8/	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Ce	Pr	Nd	Pm	Sm	Fπ	Cd	Th	Dv	Ho	Fr	Tm	Vh	Lu		
		140.12	140.91	144 24	(145)	150.36	151.97	157.25	158.93	162 50	164.93	167.26	168 94	173.04	174 97		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Th	Pa	TI	Nn	Pu	۸m	Cm	Rk	Cf	Fe	Fm	Md	No	Ir		
		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)		

Page 1

Score

Chem 150 – Exam 3a Fall 2009 **Multiple Choice:** Circle the letter of the most correct response. (6pts. per question)

- 1. The First Law of Thermodynamics states that:
 - a. Kinetic energy is stored in chemical bonds
 - b. Electrostatic energy is another name for electricity
 - c. An element in its "normal" state has no energy
 - d. Energy cannot be created or destroyed
 - e. Potential energy is a measure of the speed of molecular movement
- 2. The specific heat capacity of a substance is:
 - a. The amount of energy required to increase the temperature of one mole of the substance $1^{\circ}C$
 - b. The amount of energy required to increase the temperature of one gram of the substance $1^{\circ}C$ c. $4.184 J_{g^{\circ}C}$
 - d. The amount of energy required to increase the temperature of one pound of the substance 1°C
 - e. The amount of energy required to increase the temperature of one gram of the substance 1°F
- 3. Each of the following describes an *exothermic* process *except*:
 - a. Chemical bonds are formed
 - b. The reactants have a higher energy than the products of a reaction
 - c. The system absorbs heat from the surroundings
 - d. ΔH is negative
 - e. The system liberates heat to the surroundings
- 4. Is each of the following processes endothermic or exothermic? (3pts each)

Splitting water to form $H_2(g)$ and $O_2(g)$	Endothermic	Exothermic
Burning propane in air	Endothermic	Exothermic
Freezing apple juice	Endothermic	Exothermic
Boiling water	Endothermic	Exothermic

Single Calculations: (15pts each)

5. Strontium oxide (SrO) can be converted to strontium metal by the following reaction: $2 \operatorname{SrO}(s) \rightarrow 2 \operatorname{Sr}(s) + O_2(g)$ What is $\Delta H^o_{\text{reaction}}$ for this process? ($\Delta H_f^o = -592.0 \text{ kJ}_{\text{mol}}$ for SrO.) Name: ___

Chem 150 – Exam 3a Fall 2009

6. The specific heat capacity of liquid water is 4.184^J/_{g•°C}. How much energy is released by cooling 450.0g of liquid water from 38.16°C to 19.35°C?

- 7. How much energy is required to boil 750.0g of water at its boiling point (100°C)? $(\Delta H^{\circ}_{vaporization} = 40.64 \text{ }^{kJ}/_{mol} \text{ for water})$
- 8. You have determined that $\Delta H^{\circ}_{reaction}$ for the reaction of calcium metal with oxygen gas is $-1270^{kJ}/_{mol}$. $2 \operatorname{Ca}(s) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{CaO}(s)$ What is $\Delta H^{\circ}_{reaction}$ for the following reaction? Explain your answer. $6 \operatorname{CaO}(s) \rightarrow 6 \operatorname{Ca}(s) + 3 \operatorname{O}_2(g)$

Problems: (20pts each)

9. Acetaldehyde burns according to the following equation:

 $2 C_2H_4O(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(g)$ You perform an experiment in which you burn 12.617g of acetaldehyde and determine that the reaction generated 316.35kJ of heat. Based upon this experiment, what is the value of ΔH_f° for acetaldehyde?

Material	$\Delta H_{f}^{o} (^{kJ}/_{mol})$
$CO_2(g)$	-393.509
$H_2O(g)$	-241.818

Name: ____

Chem 150 – Exam 3a Fall 2009

10. The specific heat capacity of graphite is $0.715^{J}/_{g^{\circ}C}$ and the specific heat capacity of ethylene glycol (a component of antifreeze) is $2.38^{J}/_{g^{\circ}C}$. You have heated a block of graphite to $68.19^{\circ}C$ and dropped it into a beaker containing 500.0g ethylene glycol at 19.92°C. When the system reaches thermal equilibrium, the temperature of the graphite and ethylene glycol is 22.17°C. If the system is perfectly insulated, what was the mass of the graphite block?

11. You have been studying a series of reactions:

So far, you have determined the following ΔH°_{rxn} values: $A \rightarrow B \rightarrow C \rightarrow D$ $A \rightarrow B \rightarrow C \rightarrow D$ $A \rightarrow B +4.91 \text{ }^{kJ}_{mol}$ $C \rightarrow B -8.15 \text{ }^{kJ}_{mol}$ $C \rightarrow D -6.35 \text{ }^{kJ}_{mol}$

What is ΔH°_{rxn} for the overall reaction, $A \rightarrow D$? Is $A \rightarrow D$ endothermic or exothermic? Draw a qualitatively correct reaction coordinate diagram for the entire stepwise process, $A \rightarrow B \rightarrow C \rightarrow D$.