Chemistry 150 Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
Avogadro's \ Number = 6.022x10^{23} \ ^{units}/_{mol} \\ 32.00^{o}F = 0.000^{o}C = 273.15K \\ 1 \ foot = 12 \ inches \\ 1 \ inch = 2.54cm \ (exactly) \\ 1 \ pound = 453.6 \ g = 16 \ ounces \\ 1 \ amu = 1.6605x10^{-24} \ g \\ Masses \ of \ subatomic \ particles: \\ Proton \qquad 1.00728amu = 1.6726x10^{-24} \ g \\ Neutron \qquad 1.00866amu = 1.6749x10^{-24} \ g \\ Electron \qquad 0.000549amu = 9.1094x10^{-28} \ g
```

	i																
1																	2
H																	He
1.0079																	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Fall 2009

Multiple Choice: Circle the letter of the most correct response. (5pts. per question)

- 1. Which of the following sets of elements contains a metal, a metalloid and a nonmetal?
 - a. Rb, Nb, Pb
 - b. C, P, I
 - c. Mn, F, Si
 - d. F, Ar, Ti
 - e. Cu, Ag, Au
- 2. Which of the following organic molecules has the *fewest carbon atoms*?
 - a. Methanol
 - b. Pentyne
 - c. Butane
 - d. Ethyl amine
 - e. Propene
- 3. Which of the following formulas is *least ionic*?
 - a. PbO
 - b. RbBr
 - c. Fe_2S_3
 - $d. SF_6$
 - e. ZnSe
- 4. Different isotopes of an element:
 - a. Have the same number of protons
 - b. Have the same charge
 - c. Have the same number of electrons
 - d. Have the same mass number
 - e. Have the same number of neutrons
- 5. Which of the following represents the *largest volume*?
 - a. 785 L
 - b. $3.6x10^8 \, mL$
 - c. 29.2 kL
 - d. 8.82x10⁻⁸ mL
 - e. $1.4 \times 10^{-3} \text{ kL}$
- 6. Which of the following polyatomic ions has the *most oxygen atoms*?
 - a. sulfite
 - b. hypochlorite
 - c. cyanide
 - d. phosphate
 - e. nitrite

7. Complete each row of the following table (3pts per box):

Symbol	Number of Protons	Number of Neutrons		Atomic Number	Mass Number	Charge	
<u>V</u>	23	25	<mark>19</mark>	23	48	+4	
Ge	32	39	34	32	71	-2	
S	16	18	16	<mark>16</mark>	34	0	
Na	11	14	11	11	25	0	

Multiple Choice Calculations (9pts each):

- 8. What is the formula weight of nickel(II) nitrate? (Atomic # of nickel = 28)
 - a. $120.69 \, {}^{g}/_{mol}$
 - b. 131.39 g/mol
 - c. $179.38 \, {}^{g}/_{mol}$
 - d. $182.70^{g}/_{mol}$
 - e. $204.08 \, {}^{g}/_{mol}$
- 9. How many selenium atoms are present in a 8.313g sample of selenium (Atomic # = 34)?
 - a. 0.1053 atoms
 - b. 0.2445 atoms
 - c. $6.340x10^{22}$ atoms d. $1.472x10^{23}$ atoms

 - e. 5.719×10^{24} atoms
- 10. 4.842mols of lithium (Atomic # = 3) has a mass of how many grams?
 - a. 0.6976 g
 - b. 1.614 g
 - c. 14.53 g
 - d. 33.61 g
 - e. 2.916×10^{24} g
- 11. What is the mass of a sample of aluminum (Atomic #=13) that contains 1.31×10^{24} Al atoms?

Page 3

- a. 2.18 g
- b. 5.98 g
- c. 12.4 g
- d. 28.3 g
- e. 58.7 g

12. The elevation of Moorhead is approximately 892 feet above sea level. What is this in meters?

- a. 42.1 m
- b. 227 m
- c. 272 m
- d. 297 m
- e. 2.72×10^6 m

Problems:

13. The newly discovered element Obscurium (Ob) has two stable isotopes. ²⁸⁴Ob has a mass of 285.883amu and ²⁸⁷Ob has a mass of 288.909amu. If the average atomic mass of Ob is 286.968amu, what is the percent abundance of the lighter isotope? (13pts)

(fraction 284 Ob)(mass 284 Ob) + (fraction 287 Ob)(mass 287 Ob) = average atomic mass of Ob Let's call the fraction of 284 Ob "x". Since there are only 2 isotopes, the fraction of 287 Ob must be "1-x" (x)(285.883amu) + (1-x)(288.909amu) = 286.968amux = 0.6414The lighter isotope is 64.14% abundant

14. A number of biologically important structures and processes rely on the formation of disulfide bonds. You have isolated a natural product that has a disulfide bond and has been analyzed to have the following composition: %C = 40.88, %H = 6.86, %N = 15.89, %S = 36.38. What is the *empirical* formula of this substance? Further study reveals that this substance contains 2 disulfide bonds, with each disulfide bond containing 2 sulfur atoms. What is the molecular formula and molecular weight of this substance? (14pts)

Assume 100g of sample, convert to moles, divide to get mole ratio of the empirical formula, use the info in the problem to determine the multiplier for the molecular formula.

 $40.88g / 12.011^g/_{mol} = 3.40 mols C$ 3.40mols C / 1.13mols N = 3° C/N C:

 $6.81 \text{ mols H} / 1.13 \text{ mols N} = 6^{\text{H}} / \text{N}$ $6.86g / 1.0079^g /_{mol} = 6.81 mols H$

H: $1.13 \text{mols N} / 1.13 \text{mols N} = 1^{N}/N$ N: $15.89g / 14.007^g/_{mol} = 1.13 mols N$

 $36.38g / 32.066^g/_{mol} = 1.13mols S$ $1.13 \text{mols S} / 1.13 \text{mols N} = 1^{\text{S}}/N$ S:

So the empirical formula is: C_3H_6NS

From the problem, there are 2 disulfide bonds and each disulfide bond contains 2 sulfur atoms, so there must be a total of 4 sulfurs in this natural product. The empirical formula has only 1 sulfur, so the empirical formula must be multiplied by 4 to get the correct number of sulfurs.

Molecular Formula =
$$4(C_3H_6NS) = C_{12}H_{24}N_4S_4$$

The molecular weight of the substance is:

$$12(12.011^g/_{mol}) \ + \ 24(1.0079^g/_{mol}) \ + \ 4(14.007^g/_{mol}) \ + \ 4(32.066^g/_{mol}) \ = \ 352.614^g/_{mol}$$

Score Page 4