Chemistry 150 Exam 2

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
Avogadro's Number = 6.022 \times 10^{23} units/mol 32.00^{\circ}F = 0.000^{\circ}C = 273.15K

1 foot = 12 inches

1 inch = 2.54cm (exactly)

1 pound = 453.6 g = 16 ounces

1 amu = 1.6605 \times 10^{-24} g

Masses of subatomic particles:

Proton 1.00728amu = 1.6726 \times 10^{-24} g

Neutron 1.00866amu = 1.6749 \times 10^{-24} g

Electron 0.000549amu = 9.1094 \times 10^{-28} g

Density of Water = 1.000^{g}/mL

R = 0.08206^{L*atm}/mol*K

PV=nRT
```

1	1																2
1																	2
H																	He
1.0079		ì															4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
L	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
L	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice: Circle the letter of the most correct response. (7pts. per question)

- 1. Which of the following combinations of aqueous solutions would you expect to form a precipitate?
 - a. Hydrochloric acid + Lithium sulfite
 - b. Sodium acetate + Nickel(II) nitrate
 - c. Silver(I) nitrate + Potassium carbonate
 - d. Ammonium phosphate + Potassium carbonate
 - e. Sodium hydroxide + Nitric acid
- 2. Which of the following is *not* a redox reaction?
 - a. $Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
 - b. $NH_4NO_3(aq) + NaC_2H_3O_2(aq) \rightarrow NH_4C_2H_3O_2(aq) + NaNO_3(aq)$
 - c. $2 \text{ CuNO}_3(\text{aq}) + \text{Sn(s)} \rightarrow 2 \text{ Cu(s)} + \text{Sn(NO}_3)_2(\text{aq})$
 - d. $4 \text{ Fe(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2 \text{O}_3(s)$
 - e. $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(g)$
- 3. Under which of the following conditions is a gas most "ideal"?
 - a. High temperature, high pressure
 - b. High volume, low pressure
 - c. Low pressure, high temperature
 - d. High pressure, high volume
 - e. Room temperature, 25°C
- 4. Consider the following reaction:

$$a \text{ K}_3\text{PO}_4(\text{aq}) + b \text{ Ca}(\text{NO}_3)_2(\text{aq}) \rightarrow c \text{ Ca}_3(\text{PO}_4)_2(\text{s}) + d \text{ KNO}_3(\text{aq})$$

For every mol of K₃PO₄(aq) that reacts, how many mols of Ca₃(PO₄)₂(s) are formed?

- a. 0.25 mols
- b. 0.5 mols
- c. 1 mol
- d. 2 mols
- e. 3 mols
- 5. Consider the following reaction:

$$Mn(NO_3)_3(aq) + CrSO_4(aq) \rightarrow MnSO_4(aq) + Cr(NO_3)_3(aq)$$

What is being *reduced* in this reaction?

- a. $Mn(NO_3)_3(aq)$
- b. CrSO₄(aq)
- c. MnSO₄(aq)
- d. $Cr(NO_3)_3(aq)$
- e. This is not a redox reaction
- 6. Which of the following is a correct gas law relationship?
 - a. PT = nRV
 - **b.** $n_1T_1 = n_2T_2$
 - c. $V_1 n_1 = V_2 n_2$
 - d. $P_1T_1 = P_2T_2$
 - e. $P_1 / V_1 = P_2 / V_2$

- 7. In which of the following formulas does phosphorus have the *highest* oxidation number?
 - a. Na_3PO_4
 - b. PH₃
 - c. H₃PO
 - $d. P_4$
 - e. KH₂PO₃
- 8. Which of the following would you expect to be *insoluble* in water?
 - a. FeSO₄
 - b. NaI
 - c. $Pb(NO_3)_2$
 - d. NH₄C₂H₃O₂
 - e. BaSO₄

Multiple Choice Calculations (12pts each):

- 9. What is the pressure of 5.612mols of ideal gas at 13.64°C in a 50.0L vessel?
 - a. 7.94atm
 - b. 6.28atm
 - c. 2.64atm
 - d. 0.159atm
 - e. 0.126atm
- 10. A 3.98L steel tank contains an ideal gas at 26.81°C and 3.94atm. What is the temperature of the tank if the pressure changes to 1.48atm?
 - a. 909°C
 - b. 525°C
 - c. 71.4°C
 - d. 10.1°C
 - e. -160.°C
- 11. A reaction produces 762.8mL of ideal gas at 1.06atm pressure and 26.94°C. How many mols of gas did the reaction produce?
 - a. 366 mols
 - b. 32.8 mols
 - c. 1.06 mols
 - d. 0.366 mols
 - e. 0.0328 mols
- 12. You have dissolved 15.00g of magnesium acetate in enough water to make 200.00mL of solution. What is the concentration of the resulting solution?
 - a. 0.8998 M
 - b. 0.5267 M
 - c. 0.1800 M
 - d. 0.1053 M
 - e. $5.267 \times 10^{-4} \text{ M}$

Chem	150 –	Exam	<i>2b</i>
Fall 2	008		

Problems: (23pts each)

13. You would like to take some atmospheric measurements. You fill a weather balloon to a volume of 338.0L at 20.91°C and 0.959atm pressure. How many mols of gas are contained in the balloon? After you release the balloon, it rises to an altitude where the temperature is -11.67°C and the pressure is 0.567atm. A small hole in the balloon has allowed 14.30% of the original gas to escape. What is the volume of the balloon at this altitude?

The first part is an ideal gas law problem, PV = nRT. Let's organize our variables: $P_1 = 0.959$ atm, $V_1 = 338.0$ L, $T_1 = 20.91 + 273.15 = 294.06$ K. Plugging in:

$$(0.959 \text{atm})(338.0 \text{L}) = n(0.08206 \frac{\text{L.atm}}{\text{mol.K}})(294.06 \text{K})$$

n = 13.4 mols

The second half of the problem has multiple conditions changing, so we should use the comparative form of the ideal gas law. Again, let's start by organizing our variables: $P_1 = 0.959$ atm, $V_1 = 338.0$ L, $T_1 = 20.91 + 273.15 =$ 294.06K, $n_1 = 13.4$ mols, $P_2 = 0.567$ atm, $T_2 = -11.67 + 273.15 = 261.48$ K, $n_2 = (13.4$ mols)(0.857) = 11.5mols. Plugging in:

$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$$

$$\frac{(0.959atm)(338.0L)}{(13.4mols)(294.06K)} = \frac{(0.567atm)V_2}{(11.5mols)(261.48K)}$$

$$V_2 = 436L$$

- 14. 100.0mL of 1.299M iron(III) nitrate solution is combined with 100.0mL of 1.491M sodium carbonate solution.
 - a. Write a correctly balanced net ionic equation for the reaction that takes place.
 - b. How many grams of precipitate will this reaction form?
 - c. You recover 9.614g of precipitate. What is the percent yield?

$$\begin{array}{c} 2 \ Fe(NO_3)_3(aq) \ + \ 3 \ Na_2CO_3(aq) \ \boldsymbol{\rightarrow} \ Fe_2(CO_3)_3(s) \ + \ 6 \ NaNO_3(aq) \\ 2 \ Fe^{3+}(aq) \ + \ 6 \ NO_3^-(aq) \ + \ 6 \ Na^+(aq) \ + \ 3 \ CO_3^{2-}(aq) \ \boldsymbol{\rightarrow} \ Fe_2(CO_3)_3(s) \ + \ 6 \ Na^+(aq) \ + \ 6 \ NO_3^-(aq) \\ 2 \ Fe^{3+}(aq) \ + \ 3 \ CO_3^{2-}(aq) \ \boldsymbol{\rightarrow} \ Fe_2(CO_3)_3(s) \end{array}$$

The first equation is the "full molecular" equation, the second is the "full ionic" equation, the third is the net ionic. Now that we have a balanced equation, we can use the stoichiometry to determine the limiting reagent:

$$(0.1000L \, \text{Fe}(\text{NO}_3)_3(\text{aq}) \left(\frac{1.299 \text{mols Fe}(\text{NO}_3)_3(\text{aq})}{1 \text{L Fe}(\text{NO}_3)_3(\text{aq})} \right) \left(\frac{1 \text{mol Fe}_2(\text{CO}_3)_3(\text{s})}{2 \text{mol Fe}(\text{NO}_3)_3(\text{aq})} \right) \left(\frac{291.718 \text{g Fe}_2(\text{CO}_3)_3(\text{s})}{1 \text{mol Fe}_2(\text{CO}_3)_3(\text{s})} \right) = 18.95 \text{g Fe}_2(\text{CO}_3)_3(\text{s})$$

If
$$CO_3^2$$
 (aq) is limiting:

$$If CO32-(aq) is limiting:$$

$$(0.1000L Na2CO3(aq)) \left(\frac{1.491 \text{mols Na}_2CO_3(aq)}{1L Na2CO_3(aq)}\right) \left(\frac{1 \text{mol Fe}_2(CO_3)_3(s)}{3 \text{mol Na}_2CO_3(aq)}\right) \left(\frac{291.718 \text{g Fe}_2(CO_3)_3(s)}{1 \text{mol Fe}_2(CO_3)_3(s)}\right) = 14.50 \text{g Fe}_2(CO_3)_3(s)$$

Since the amount of carbonate we're using produces less product, it must be limiting, so the theoretical yield of precipitate for this mixture is 14.50g of $Fe_2(CO_3)_3(s)$.

To calculate the percent yield,

$$(9.614g / 14.50g)x100\% = 66.31\%$$
 yield.