Chemistry 150

Exam 1

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

 $Avogadro's \ Number = 6.022x10^{23} \ ^{units}/_{mol}$ $32.00^{o}F = 0.000^{o}C = 273.15K$ $1 \ foot = 12 \ inches$ $1 \ inch = 2.54cm \ (exactly)$ $1 \ pound = 453.6 \ g = 16 \ ounces$ $1 \ amu = 1.6605x10^{-24} \ g$ $Masses \ of \ subatomic \ particles:$ $Proton \qquad 1.00728amu = 1.6726x10^{-24} \ g$ $Neutron \qquad 1.00866amu = 1.6749x10^{-24} \ g$ $Electron \qquad 0.000549amu = 9.1094x10^{-28} \ g$

1																	2
Н																	He
1.0079	4											5	6	7	8	9	4.0026
Li	Be											В	$\overset{\circ}{\mathbf{C}}$	Ň	Ŏ	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice: Circle the letter of the most correct response. (5pts. per question)

1. Which of the following sets of elements contains a metal, a metalloid and a nonmetal?

- a. Na, Mg, Al
- b. N, O, F
- c. Cu, Ni, Fe
- d. Ar, Si, Ag
- e. H, He, Cl

2. Which of the following organic molecules has the most carbon atoms?

- a. Methanol
- b. Pentyne
- c. Butane
- d. Ethyl amine
- e. Propene

3. Which of the following formulas is *most ionic*?

- a. PbO
- b. RbBr
- c. Fe_2S_3
- d. SF₆
- e. ZnSe

In general, the farther apart 2 elements are on the Periodic Table, the more ionic their interaction will be.

- 4. Different isotopes of an element:
 - a. Have the same number of protons
 - b. Have the same mass number
 - c. Have the same number of neutrons
 - d. Have the same charge
 - e. Have the same number of electrons

If we are very strictly talking about *atoms* of an element, then they would also have the same number of electrons and the same charge (zero), but the definition of isotope doesn't restrict us to only atoms. ⁵⁵Fe²⁺ and ⁵⁶Fe³⁺ are different isotopes of iron, they're also different ions.

5. Which of the following represents the *largest mass*?

- a. $1.4x10^{-3}$ kg
- b. 8.82x10⁻⁸ mg
- c. 29.2 kg
- d. $3.6x10^8 mg$
- e. 785 g

6. Which of the following polyatomic ions has the *fewest oxygen atoms*?

- a. sulfate
- b. hypochlorite
- c. cyanide
- d. phosphate
- e. nitrite

Some people thought I was trying to make this a "trick" question, but I wasn't. Cyanide ions (CN-) have **no** oxygen atoms, the rest all have at least one oxygen.

Page 2 Score

7. Complete the following table (3pts per box):

Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Atomic Number	Mass Number	Charge	
Sc	21	24	19	21	45	+2	
In	49	63	49	49	112	0	
N	7	7	10	7	14	-3	
Mg	12	13	10	12	25	+2	

Multiple Choice Calculations (9pts each):

8. What is the formula weight of magnesium carbonate?

a. $36.316 \, {}^{g}/_{mol}$

b. $84.313^{g}/_{mol}$

c. $100.312 \, \text{g/mol}$

d. 108.618 g/_{mol}

e. 144.321 ^g/_{mol}

Mg is in the second column of the P.T., so we expect +2 charge Carbonate is CO₃²-

The balanced formula of magnesium carbonate is MgCO₃.

Formula weight = $24.305 + 12.011 + 3(15.999) = 84.313^g/_{mol}$

9. How many titanium atoms are present in a 8.313g sample of titanium (Atomic # = 22)?

- a. 0.1736 atoms
- b. 398.0 atoms
- c. $1.046x10^{23}$ atoms
- d. 2.275×10^{23} atoms
- e. 5.006×10^{24} atoms

The atomic mass of Ti is 47.88 g/mol (from the P.T.)

 $(8.313g \text{ Ti}) / (47.88 \,^{g \text{ Ti}}/_{\text{mol Ti}}) = 0.1736 \text{mols Ti}$ $(0.1736 \text{mols Ti}) (6.022 \times 10^{23} \,^{\text{Ti atoms}}/_{\text{mol Ti}}) = 1.046 \, \times 10^{23} \,^{\text{Ti atoms}}$

10. 4.842mols of silicon (Atomic # 14) has a mass of how many grams?

- a. 0.1724 g
- b. 4.842 g
- c. 67.79 g
- d. 136.0 g
- e. 2.916×10^{24} g

The atomic mass of Si is 28.086 g/mol (from the P.T.)

 $(4.842 \text{mol Si}) (28.086 \text{ g Si}/_{\text{mol Si}}) = 135.9924 \text{g Si}$

Rounding to a reasonable number of sig figs, 136.0g Si

11. What is the mass of a sample of copper (Atomic # = 29) that contains 1.31×10^{24} Cu atoms?

- a. 2.18 g
- b. 29.2 g
- c. 63.1 g d. 138 g
- e. 163 g

The atomic mass of Cu is 63.546 $^{\rm g}/_{\rm mol}$ (from the P.T.) $(1.31 \times 10^{24} \ \rm Cu \ atoms) \ / \ (6.022 \times 10^{23} \ ^{\rm Cu \ atoms}/_{\rm mol \ Cu}) = 2.175 mols \ \rm Cu$

 $(2.175 \text{mol Cu}) (63.546 \text{ g}^{\text{Cu}}/_{\text{mol Cu}}) = 138 \text{g}^{\text{Cu}}$

Chem 150 – Exam	<i>1a</i>
Fall 2008	

Name:		

- 12. A block of wood has a mass of 3.991 pounds. What is its mass in milligrams?
 - a. $8.799 \times 10^{-6} \text{ mg}$
 - b. 1.810 mg
 - c. 8.799 mg
 - d. 113.7 mg
 - e. $1.810x10^6$ mg

Conversion factors are on the first page of the exam... (3.991 pounds) (453.6 g/pound) (1000 mg/g) = 1810000 mg

Problems:

13. The newly discovered element Dragonium (Dg) has two stable isotopes. ³¹⁸Dg has a mass of 318.813amu and ³¹⁵Dg has a mass of 315.864amu. If the average atomic mass of Dg is 317.061amu, what is the percent abundance of the heavier isotope? (13pts)

This is a weighted average problem.

(Average mass of Dg) = (fraction 318 Dg)(mass 318 Dg) + (fraction 315 Dg)(mass 315 Dg) Since we're looking for the percent of the heavier element, let's call (fraction 318 Dg) "x" $^{317.061}$ amu = (x)(318.813amu) + (1-x)(315.864amu)

After some algebra, x = 0.405900, so the % 318 Dg = 40.5900%

The average is slightly closer to the mass of the lighter isotope, so this answer is reasonable.

14. A number of biologically important structures and processes rely on the formation of disulfide bonds. You have isolated a natural product that has a disulfide bond and has been analyzed to have the following composition: %C = 35.81, %H = 6.01, %O = 23.85, %N = 10.44, %S = 23.90. What is the *empirical* formula of this substance? Disulfide bonds always contain 2 sulfur atoms. What is the molecular formula and molecular weight of this substance? (14pts)

Assume 100g of sample:

35.81g C / 12.011g/_{mol} = 2.98mols C → 2.98mols C / 0.745mols S = 4 $^{\text{mol C}}$ /_{mol S} 6.01g H / 1.0079g/_{mol} = 5.96mols H → 5.96mols H / 0.745mols S = 8 $^{\text{mol H}}$ /_{mol S} 23.85g O / 15.999g/_{mol} = 1.49mols O → 1.49mols O / 0.745mols S = 2 $^{\text{mol O}}$ /_{mol S} 10.44g N / 14.007g/_{mol} = 0.745mols N → 0.745mols N / 0.745mols S = 1 $^{\text{mol N}}$ /_{mol S} 23.90g S / 32.066g/_{mol} = 0.745mols S → 0.745mols S / 0.745mols S = 1

The empirical formula is: C₄H₈O₂N₁S₁

Since the problem tells us that disulfide bonds always contain 2 sulfurs, we know that the empirical formula has to be doubled to give us a molecular formula with two sulfur atoms.

The molecular formula is: C₈H₁₆O₄N₂S₂

Molecular weight = $8(12.011^{g}/_{mol}) + 16(1.0079^{g}/_{mol}) + 4(15.999^{g}/_{mol}) + 2(14.007^{g}/_{mol}) + 2(32.006^{g}/_{mol})$ = $269.494^{g}/_{mol}$

{Since the molecular formula is 2x the empirical formula, the molecular weight is 2x the empirical formula mass.}

Page 4 Score