Chemistry 150

Exam 4

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
Avogadro's Number = 6.022 \times 10^{23} units/mol
                                                                         c = \lambda v = 3.00 \times 10^8 \, \text{m/sec}
                                                                          E_{photon} = hv
32.00^{\circ}F = 0.000^{\circ}C = 273.15K
1 \text{ foot} = 12 \text{ inches}
1 \text{ inch} = 2.54 \text{cm} \text{ (exactly)}
1 pound = 453.6 g = 16 ounces
1 amu = 1.6605 \times 10^{-24} g
Masses of subatomic particles:
   Proton 1.00728amu = 1.6726x10^{-24} g
Neutron 1.00866amu = 1.6749x10^{-24} g
   Electron 0.000549amu = 9.1094x10^{-28} g
Density of Water = 1.000^{g}/_{mL}
R = 0.08206^{\text{L•atm}}/_{\text{mol•K}}
PV=nRT
1 \text{ calorie} = 4.184 \text{ J} = 0.001 \text{Calorie}
h = 6.626 \times 10^{-34} \text{ Jsec}
```

$\lambda = {}^{h}/_{mv}$ 1 J = 1 kg (${}^{m}/_{sec}$) ²																	
1																	2
H																	He 4.0026
3	4											5	6	7	8	9	10
Li	Be											В	\mathbf{C}	N	O	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na 22.990	Mg 24.305											Al 26.982	Si 28.086	P 30.974	S 32.066	Cl 35.453	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.098	Ca	Sc 44.956	Ti 47.88	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.69	Cu 63.546	Zn 65.39	Ga 69.723	Ge	As 74.922	Se 78.96	Br 79.904	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.468	Sr 87.62	Y 88.906	Zr	Nb 92.906	Mo 95.94	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I 126.90	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W 183.84	Re 186.21	Os	Ir	Pt	Au	Hg	Tl 204.38	Pb	Bi	Po	At (210)	Rn
87	88	89	104	105	106	107	108	109	110	111	112	207.30	114	200.70	116	(210)	(222)
Fr (223)	Ra 226.03	Ac 227.03	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	(269)	(272)	(277)				-		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

	em 150 – Exam 4a ring 2008	Name:									
Mı	Multiple Choice: Circle the letter of the most correct response. (5pts. per question)										
1.	A covalent bond: a. Involves sharing electrons b. Is always polar c. Forms ions in solution d. Always contains a metal e. Always has high bond energy										
2.	Electronegativity a. Is the negative charge of an ion b. Is the energy required to remove an electron from an atom in the gas phase c. Is the energy required to remove a <i>pair</i> of electrons from an atom d. Is a measure of how strongly an atom attracts electrons in a covalent bond c. Is determined by assigning one electron to each atom of a bond										
3.	Electronegativity <i>decreases</i> : a. In the center of the Periodic Table b. As the quantum number "n" decreases c. Top to bottom on the Periodic Table d. Left to right across the Periodic Table e. As atoms get smaller										
4.	What orbital hybridization gives a <i>square planar molecular shape</i> ? a. sp b. sp ² c. sp ³ d. sp ³ d c. sp ³ d ²										
Pe	riodic Trends: For each of the and give a <i>brief</i> explanation	he following, circle the letter of the most correct response (4pts) of your choice (3pts).									
5.	Which of the following X-O a. CO_2 b. SO_2 c. BrO_2 d. SiO_2 e. O_2	bonds would you expect to be the <i>longest</i> ? Explain:									
6.	Which of the following <i>atom</i> a. Sn	as would you expect to be the <i>largest</i> ? Explain:									

b. Be

c. Cr d. K e. N

7. Which of the following *ions* would you expect to be the *largest*?

- a. Mg^{2+}
- b. P³⁻
- c. Al³⁺
- d. Cl
- e. K⁺

Explain:

8. Which of the following would you expect to have the *highest* first ionization energy?

- a. Na
- b. Mg
- c. Si
- d. P
- e. Ar

Explain:

9. Which of the following would you expect to have the *least polar* bonds?

- a. CO_3^{2-}
- b. CN
- $c. F_2$
- d. GeS₂
- e. TeBr₆

Explain:

Problems:

For each of the following, write out a correct electron configuration. You may use noble gas shorthand notation for species below the 2nd row of the Periodic Table. (6pts each)

- 10. Sodium, Na (At.# = 11)
- 11. Zirconium, Zr (At.# = 40)
- 12. Selenide ion, Se^{2-} (At.# = 34)
- 13. Tin(II) ion, Sn^{2+} (At.# = 50)
- 14. What are the 3 most likely charges (+ or -) of an arsenic (As, At.# = 33) ion? Explain your answers. (15pts)

For each of the following, draw a correct Lewis Structure, determine the formal charge on each atom, name the electronic geometry, draw an appropriate VSEPR structure, and show the dipole moment of any polar molecules/ions. (14pts each)

15. CH₃F

16. CHO₂ (formate ion)

17. C_2H_2

18. PCl₅