Chemistry 150

Exam 2

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

```
Avogadro's Number = 6.022 \times 10^{23} units/mol 32.00^{\circ}F = 0.000^{\circ}C = 273.15K

1 foot = 12 inches

1 inch = 2.54cm (exactly)

1 pound = 453.6 g = 16 ounces

1 amu = 1.6605 \times 10^{-24} g

Masses of subatomic particles:

Proton 1.00728amu = 1.6726 \times 10^{-24} g

Neutron 1.00866amu = 1.6749 \times 10^{-24} g

Electron 0.000549amu = 9.1094 \times 10^{-28} g

Density of Water = 1.000^{g}/_{mL}

R = 0.08206 L*atm/_{mol*K}

PV=nRT
```

1																	2
H																	He
1.0079		_															4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	\mathbf{F}	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice: Circle the letter of the most correct response. (6pts. per question)

1. Consider the following reaction:

$$a \text{ KBr(aq)} + b \text{ AgNO}_3(\text{aq}) \rightarrow c \text{ AgBr(s)} + d \text{ KNO}_3(\text{aq})$$

For every mol of KBr(aq) that reacts, how many mols of AgBr(s) are formed?

- a. 0.25 mols
- b. 0.5 mols
- c. 1 mol
- d. 2 mols
- e. 3 mols
- 2. Which of the following would you expect to be insoluble in water?
 - a. Na₃PO₄
 - b. $(NH_4)_2CO_3$
 - c. BaSO₄
 - d. $Hg(C_2H_3O_2)_2$
 - e. $Ca(NO_3)_2$
- 3. Which of the following is a redox reaction?
 - a. $NH_4NO_3(aq) + NaC_2H_3O_2(aq) \rightarrow NH_4C_2H_3O_2(aq) + NaNO_3(aq)$
 - c. $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$
 - b. $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(1)$
 - d. $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
 - e. $H_2CO_3(aq) \rightarrow H_2O(1) + CO_2(g)$
- 4. Under which of the following conditions is a gas most likely to *not* be "ideal"?
 - a. Room temperature, 25°C
 - b. High temperature, high pressure
 - c. High pressure, high volume
 - d. High pressure, low temperature
 - e. High volume, low pressure
- 5. Which of the following is *not* a correct gas law relationship?
 - a. PV = nRT
 - b. $P_1 / T_1 = P_2 / T_2$
 - c. $P_1V_1 = P_2V_2$
 - d. $n_1T_1 = n_2T_2$
 - e. $V_1 n_1 = V_2 n_2$
- 6. Consider the following reaction:

$$2 \text{ Cu}^{2+}(\text{aq}) + \text{Zn}(\text{s}) \longrightarrow 2 \text{ Cu}^{+}(\text{aq}) + \text{Zn}^{2+}(\text{aq})$$

What is *oxidized* in this reaction?

- a. $Cu^{2+}(aq)$
- b. Zn(s)
- c. Cu⁺(aq)
- d. $Zn^{2+}(aq)$
- e. This is not a redox reaction

- 7. In which of the following formulas does sulfur have the lowest oxidation number?
 - a. S(s)
 - b. $(NH_4)_2S$ (aq)
 - c. BaSO₄
 - d. $SO_2(g)$
 - e. Na_2SO_3 (s)

Multiple Choice Calculations (12pts each):

- 8. How many mols of sodium ions are present in 68.00mL of a 1.927M sodium sulfate solution?
 - a. 0.2621 mols
 - b. 0.1310 mols
 - c. 0.06552 mols
 - d. 0.05139 mols
 - e. 0.02569 mols
- 9. You have dissolved 18.311g of calcium chloride in enough water to make 350.00mL of solution. What is the concentration of the resulting solution?
 - a. 0.6927 M
 - **b.** 0.4714 M
 - c. 0.08485 M
 - d. 0.05775 M
 - e. 0.05232 M
- 10. What is the volume of 1.927mols of ideal gas at 1.162atm pressure and 16.61°C?
 - a. 53.24 L
 - b. 39.43 L
 - c. 10.62 L
 - d. 3.052 L
 - e. 2.260 L
- 11. A steel tank contains an ideal gas at 28.42°C and 3.684atm. If the tank is cooled to 12.67°C, what is the pressure of the gas in the tank?
 - a. 8.264 atm
 - b. 3.887 atm
 - c. 3.684 atm
 - d. 3.492 atm
 - e. 1.642 atm

Problems: (30pts each)

12. You have reacted 18.732g of potassium sulfide solid with 500.0mL of 2.082M HCl(aq). If all of the gas produced by this reaction is collected in a 4.000L vessel, what will the pressure be in that vessel? {Assume that the vessel contains only the gas produced in the reaction.}

Always start with a balanced chemical equation:

$$K_2S(s) + 2 HCl(aq) \longrightarrow H_2S(g) + 2 KCl(aq)$$

If $K_2S(s)$ is the limiting reagent, the pressure would be:

$$(18.732 \text{g K}_2\text{S(s)}) \left(\frac{1 \text{mol K}_2\text{S}}{110.262 \text{g K}_2\text{S}} \right) \left(\frac{1 \text{mol H}_2\text{S}}{1 \text{mol K}_2\text{S}} \right) \left(\frac{(0.08206 \frac{\text{L•atm}}{\text{mol•K}})(298.15K)}{4.000\text{L}} \right) = 1.039 \text{atm}$$

If HCl(aq) is the limiting reagent, the yield would be:

$$(0.5000L \text{ HCl(aq)}) \left(\frac{2.082 \text{mol HCl}}{\text{L HCl(aq)}}\right) \left(\frac{1 \text{mol H}_2 \text{S}}{2 \text{mol HCl}}\right) \left(\frac{(0.08206 \frac{\text{L•atm}}{\text{mol•K}})(298.15K)}{4.000L}\right) = 3.184 \text{atm}$$

Since $K_2S(s)$ produces less product, it is the limiting reagent. The pressure in the vessel is 1.039atm.

- 13. 125.0mL of 1.418M calcium nitrate solution is combined with 150.0mL of 1.298 M sodium carbonate solution.
 - a. Write a correctly balanced equation for the reaction that takes place.
 - b. How many grams of precipitate will this reaction form?
 - c. If you collect 9.138g of solid, what is your percent yield?

Always start with a balanced chemical equation:

 $Ca(NO_3)_2(aq) \ + \ Na_2CO_3(aq) \ --> \ CaCO_3(s) \ + \ 2 \ NaNO_3(aq)$

If Ca(NO₃)₂(aq) is the limiting reagent, the yield would be:

$$\left(0.1250L\right)\left(\frac{1.418\text{mol Ca(NO}_3)_2(\text{aq})}{L}\right)\left(\frac{1\text{mol CaCO}_3}{1\text{mol Ca(NO}_3)_2}\right)\left(\frac{100.086\text{g CaCO}_3}{\text{mol CaCO}_3}\right) = 17.74\text{g CaCO}_3(\text{s})$$

If Na₂CO₃(aq) is the limiting reagent, the yield would be:

$$(0.1500L) \left(\frac{1.298 \text{mol Na}_2 \text{CO}_3(\text{aq})}{\text{L}}\right) \left(\frac{1 \text{mol CaCO}_3}{1 \text{mol Na}_2 \text{CO}_3}\right) \left(\frac{100.086 \text{g CaCO}_3}{\text{mol CaCO}_3}\right) = 19.49 \text{g CaCO}_3(\text{s})$$

Since Ca(NO₃)₂(aq) produces less product, it is the limiting reagent. The percent yield is:

$$\left(\frac{9.138g}{17.74g}\right) \times 100\% = 51.51\%$$
 yield